NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let X=R‾X=\overline{\mathbb{R}}X=R be the Extended Real Line then T={A⊂X:∀a∈A,{∃ϵ>0 s.t. (a−ϵ,a+ϵ)⊆Aif a∈R∃M>0 s.t. (M,+∞]⊆Aif a=+∞∃M>0 s.t. [−∞,−M)⊆Aif a=−∞}\mathscr{T}=\left\{ A\subset X:\forall a \in A, \begin{cases} \exists\epsilon>0\ s.t. \ (a-\epsilon,a+\epsilon)\subseteq A&\text{if } a\in\mathbb{R} \\ \exists M>0\ s.t. \ (M,+\infty]\subseteq A&\text{if }a=+\infty \\ \exists M>0\ s.t. \ [-\infty,-M)\subseteq A&\text{if }a=-\infty \end{cases} \right\}T=⎩⎨⎧A⊂X:∀a∈A,⎩⎨⎧∃ϵ>0 s.t. (a−ϵ,a+ϵ)⊆A∃M>0 s.t. (M,+∞]⊆A∃M>0 s.t. [−∞,−M)⊆Aif a∈Rif a=+∞if a=−∞⎭⎬⎫is called the standard Topology on R‾\overline{\mathbb{R}}R.
Linear Map
A Summary of MATH 891
Lebesgue Integral
Function of real measurable functions is measurable
Induced Topology
Topological Space