FIND ME ON

GitHub

LinkedIn

Standard topology

🌱

Definition

Definition

Let X=RX=\overline{\mathbb{R}} be the Extended Real Line then T={AX:aA,{ϵ>0 s.t. (aϵ,a+ϵ)Aif aRM>0 s.t. (M,+]Aif a=+M>0 s.t. [,M)Aif a=}\mathscr{T}=\left\{ A\subset X:\forall a \in A, \begin{cases} \exists\epsilon>0\ s.t. \ (a-\epsilon,a+\epsilon)\subseteq A&\text{if } a\in\mathbb{R} \\ \exists M>0\ s.t. \ (M,+\infty]\subseteq A&\text{if }a=+\infty \\ \exists M>0\ s.t. \ [-\infty,-M)\subseteq A&\text{if }a=-\infty \end{cases} \right\}is called the standard Topology on R\overline{\mathbb{R}}.

Linked from