FIND ME ON

GitHub

LinkedIn

Extended Real Line

🌱

Definition

Definition

Let R‾=R∪{āˆ’āˆž,+āˆž}\overline{\mathbb{R}}=\mathbb{R}\cup \{ -\infty,+\infty \} denote the extended real line where: - āˆ’āˆž<+āˆž-\infty<+\infty - āˆ€a∈R:āˆ’āˆž<a<+āˆž\forall a \in\mathbb{R}:-\infty<a<+\infty - āˆ€a∈R:{a+(+āˆž)=+āˆža+(āˆ’āˆž)=āˆ’āˆž\forall a \in \mathbb{R}: \begin{cases} a+(+\infty)=+\infty\\ a+(-\infty)=-\infty \end{cases} - +āˆž+(+āˆž)=+āˆž+\infty+(+\infty)=+\infty - (āˆ’āˆž)+(āˆ’āˆž)=āˆ’āˆž(-\infty)+(-\infty)=-\infty - āˆ’(+āˆž)=āˆ’āˆž-(+\infty)=-\infty and āˆ’(āˆ’āˆž)=+āˆž-(-\infty)=+\infty - (+āˆž)āˆ’(+āˆž)(+\infty)-(+\infty) and (āˆ’āˆž)āˆ’(āˆ’āˆž)(-\infty)-(-\infty) are undefined.

Linked from