FIND ME ON

GitHub

LinkedIn

Induced Topology

🌱

Definition
Analysis

If (X,T)(X,\mathscr{T}) is a topological space and YXY\subseteq X, we define TY={AY:AT}\mathscr{T}_{Y}=\{ A\cap Y:A\in\mathscr{T} \}as induced or relative topology. ATYA\in\mathscr{T}_{Y} is said to be open relative to YY.

Example

If X=RX=\overline{\mathbb{R}} is equipped with the Standard topology and Y=[0,1)Y=[0,1), then AA is relatively Open in YY if and only if aA,ϵ>0 s.t. {(aϵ,a+ϵ)Aif a>0[0,ϵ)Aif a=0\forall a \in A,\exists\epsilon>0\ s.t. \ \begin{cases} (a-\epsilon,a+\epsilon)\subseteq A&\text{if }a>0 \\ [0,\epsilon)\subseteq A&\text{if }a=0 \end{cases}

Linked from