FIND ME ON

GitHub

LinkedIn

Itô Isometry

🌱

Definition
StochasticDiffs

Motivation

Let (Xt)t0,(Yt)t0(X_{t})_{t\ge 0},(Y_{t})_{t\ge 0} be stochastic processes on (Ω,F,P)(\Omega,\mathcal{F},P). Our goal is to make sense of YdX\int\limits Y \, dX ## 1. Lebesgue-Stieltjes Pathwise Integral We first tried to use the LS integral to do this. We first noted that the Lebesgue-Stieltjes Measure, μg\mu_{g} only worked with gg increasing and that μg\mu_{g} was the difference between two increasing functions.

We then saw that for any g=g1g2g=g_{1}-g_{2} where both g1,g2g_{1},g_{2} are increasing that gg then must have Variation on R+\mathbb{R}^{+}.

We then put the final nail in the coffin by showing Continuous Martingale with Finite Variation is Constant.

To summarize, if we wished to use the LS integral to define YdX\int\limits Y \, dX we needed XX to be a continuous martingale with Variation but this form meant that XX was constant which is pretty useless!

2. Riemann-Stieltjes Pathwise Integrals

We then thought, ok how about RS integrals? i.e. ωΩlimπ0i=0N1Yti(ω)(Xti+1(ω)Xti(ω))\forall\omega\in\Omega\quad\lim_{ |\pi| \to 0 } \sum_{i=0}^{N-1}Y_{t_{i}}(\omega)(X_{t_{i+1}}(\omega)-X_{t_{i}}(\omega))where π=(t0,,tN)\pi=(t_{0},\dots,t_{N}) is a subdivision of [0,1][0,1] (for simplicity). We then defined the following: Let g:[0,1]Rg:[0,1]\to \mathbb{R} be continuous. Define SπC0([0,1]:R)S_{\pi}\in C^{0}([0,1]:\mathbb{R}) to be Sπ(f)=i=0N1f(ti)(g(ti+1)g(ti))S_{\pi}(f)=\sum_{i=0}^{N-1}f(t_{i})(g(t_{i+1})-g(t_{i}))Assume limπ0Sπ(f)\lim_{ |\pi| \to 0 }S_{\pi}(f) exists fC0([0,1]:R)\forall f\in C^{0}([0,1]:\mathbb{R}). We then applied the Principle of Uniform Boundedness to find that gg also needs to have Variation on [0,1][0,1] in order for this to be defined i.e. Sπop=supf1Sπ(f)=V(g;π)\lVert S_{\pi} \rVert _{op}=\sup_{\lVert f \rVert _{\infty}\le 1}|S_{\pi}(f)|=V(g;\pi)and by the theorem we found that supnNSπop=supnNV(g;π)<\sup_{n\in\mathbb{N}}\lVert S_{\pi} \rVert _{op}=\sup_{n\in\mathbb{N}}V(g;\pi)<\infty Then considering the standard Brownian Motion (Bt)t0(B_{t})_{t\ge 0} we computed 0tBsdBs=12(Bt2t)\int\limits _{0}^{t}B_{s} \, dB_{s}=\frac{1}{2}(B_{t}^{2}-t) in probability by applying the framework of the RS integral.

Motivation Trying Again!

Let now (Mt)t0(M_{t})_{t\ge 0} be a right continuous L2L^{2}-martingale and (Xt)t0(X_{t})_{t\ge 0} be a stochastic process on (Ω,F,P)(\Omega,\mathcal{F},P). Our goal is to make sense of XdM\int\limits X \, dM in a way that it agrees with the LS pathwise integrals whenever they’re defined. ## Itô Isometry (0) Now, we take gg increasing and right continuous meaning we can redefine the Lebesgue-Stieltjes Measure μg\mu_{g} strictly on intervals of the type (a,b](a,b] i.e. since gg right continuous     g(b+)=g(b)\implies g(b^{+})=g(b) and g(a+)=g(a)g(a^{+})=g(a) Hence μg((a,b])=g(b)g(a)\mu_{g}((a,b])=g(b)-g(a) Hence for 0s<t0\le s<t we define 1(s,t]×ΩdM=MtMs\int\limits \mathbb{1}_{(s,t]\times \Omega} \, dM=M_{t}-M_{s} Letting FΩF\subset\Omega we then consider 1(s,t]×F{1(s,t]ωF0otherwise\mathbb{1}_{(s,t]\times F}\begin{cases} \mathbb{1}_{(s,t]} & \omega\in F \\ 0 & \text{otherwise} \end{cases}Giving us 1(s,t]×FdM=1F(MtMs)\int\limits \mathbb{1}_{(s,t]\times F} \, dM =\mathbb{1}_{F}(M_{t}-M_{s}) ## Itô Isometry (1) Let now (Mt)t0(M_{t})_{t\ge 0} be a right continuous L2L^{2}-martingale. We denote μM\mu_{M} as the Doléans measure on (R+×Ω,P)(\mathbb{R}^{+}\times\Omega,\mathscr{P}) associated with MM. where P\mathscr{P} is the σ-algebra generated by R\mathcal{R}. Now let FFsF\in\mathcal{F}_{s} E[(1(s,t]×FdM)2]=E[1F(MtMs)2]=E[1F(Mt2Ms2)]μM((s,t]×F)E\left[ \left( \int\limits \mathbb{1}_{(s,t]\times F} \, dM \right)^{2} \right]=E[\mathbb{1}_{F}(M_{t}-M_{s})^{2}]=\underbrace{ E[\mathbb{1}_{F}(M_{t}^{2}-M_{s}^{2})] }_{ \mu_{M}({(s,t]\times F}) }which is our first version of the isometry. More formally: 0s<t,FFs\forall 0\le s<t, \forall F\in\mathcal{F}_{s} E[(1(s,t]×FdMItoˆ Stochastic Integral)2]=μM((s,t]×F)=R+×Ω1(s,t]×FdμMLebesgue IntegralE\left[ \left( \smash[b]{\underbrace{ \int\limits \mathbb{1}_{(s,t]\times F} \, dM }_{ \mathclap{\text{Itô Stochastic Integral}} }}\right)^{2} \right]=\mu_{M}({(s,t]\times F}) =\underbrace{ \int\limits _{\mathbb{R}^{+}\times\Omega}\mathbb{1}_{(s,t]\times F} \, d\mu_{M} }_{ \text{Lebesgue Integral} }Which we can think of as a bridge from our Itô Stochastic Integral to the Lebesgue Integral or Lebesgue-Stieltjes Integral. ### Note For 0s<t,FFs0\le s<t,F\in\mathcal{F}_{s} E[(1(s,t]×FdM)2]=E[1F(Mt2Ms2)]0E\left[ \left( \int\limits \mathbb{1}_{(s,t]\times F} \, dM \right)^{2} \right]=E[\mathbb{1}_{F}(M_{t}^{2}-M_{s}^{2})]\ge 0and for FF0F\in\mathcal{F_{0}} 1{0}×FdM=0μM({0}×F)=0\int\limits \mathbb{1}_{\{ 0 \}\times F} \, dM =0\quad\mu_{M}(\{ 0 \}\times F)=0 ## Itô Isometry (2) We then introduce some sets/σ-algebras: - R\mathcal{R}: (R) Set of Predictable Rectangles - A\mathcal{A}: (A) Ring Generated by R - P\mathcal{P}: (P) Predictable σ-algebra We then define E\mathcal{E} to be the set of set of simple predictable processes where any XEX\in\mathcal{E} can be represented like so: X=i=1nai1(si,ti]×Fi+k=1ndk1{0}×F0k(★)\tag{★}X=\sum_{i=1}^{n}a_{i}\mathbb{1}_{(s_{i},t_{i}]\times F_{i}}+\sum_{k=1}^{n}d_{k}\mathbb{1}_{\{ 0 \}\times F_{0k}}where 0si<ti,FiFsi,i=1,,n0\le s_{i}<t_{i}, F_{i}\in\mathcal{F}_{s_{i}}, \forall i=1,\dots,n and F0kF0,k=1,,nF_{0k}\in\mathcal{F}_{0}, \forall k=1,\dots,n. We then use this to define the new isometry: Let M=(Mt)t0M=(M_{t})_{t\ge 0} be a right continuous L2L^{2}-martingale. We have that the isometry holds XE\forall X\in\mathcal{E} where E[(XdM)2]=R+×ΩX2dμME\left[ \left( \int\limits X \, dM \right)^{2} \right]=\int\limits _{\mathbb{R}^{+}\times\Omega}X^{2} \, d\mu_{M}or XdML2(Ω,F,P)=XL2(R+×Ω,P,μm)\left\lVert \int\limits X \, dM \right\rVert _{L^{2}(\Omega,\mathcal{F},P)}=\lVert X \rVert _{L^{2}(\mathbb{R}^{+}\times\Omega,\mathscr{P},\mu_{m})} ## Itô Isometry (3) Now we extend the previous isometry by proving the Density of Ɛ in L2(R+×Ω,P,μM)L^{2}(\mathbb{R}^{+}\times\Omega,\mathcal{P},\mu_{M}). This allows us to get to our final destination.

Let M=(Mt)t0M=(M_{t})_{t\ge 0} be a right continuous L2L^{2}-martingale. We have that the isometry holds XL2(R+×Ω,P,μM)\forall X\in L^{2}(\mathbb{R}^{+}\times\Omega,\mathscr{P},\mu_{M}) where E[(XdM)2]=R+×ΩX2dμME\left[ \left( \int\limits X \, dM \right)^{2} \right]=\int\limits _{\mathbb{R}^{+}\times\Omega}X^{2} \, d\mu_{M}or XdML2(Ω,F,P)=XL2(R+×Ω,P,μm)\left\lVert \int\limits X \, dM \right\rVert _{L^{2}(\Omega,\mathcal{F},P)}=\lVert X \rVert _{L^{2}(\mathbb{R}^{+}\times\Omega,\mathscr{P},\mu_{m})}

Linked from