FIND ME ON

GitHub

LinkedIn

Doléans Measure

🌱

Definition
StochasticDiffs

Definition

Let XX be a right continuous L2L^{2}-martingale. For all 0s<t,FFs0\le s<t, F\in\mathcal{F}_{s} we define μX((s,t]×F)=E[1F(Xt2Xs2)]\mu_{X}((s,t]\times F)=E[\mathbb{1}_{F}(X_{t}^{2}-X_{s}^{2})]and μX({0}×F)=0,FF0\mu_{X}(\{ 0 \}\times F)=0, \forall F\in\mathcal{F}_{0} This μX\mu_{X} is called the Doléans measure associated with XX.

Proposition (μX\mu_{X} extends to σ-finite R\mathcal{R})

The Doléans measure, μX\mu_{X} extends uniquely to a σ-finite measure R\mathcal{R} on R+×Ω\mathbb{R}^{+}\times\Omega generated by sets of the form - {0}×F0\{ 0 \}\times F_{0} with F0F0F_{0}\in\mathcal{F}_{0} and; - (s,t]×F,0s<t,FFs(s,t]\times F,0\le s<t, \forall F\in\mathcal{F}_{s}

Linked from