FIND ME ON

GitHub

LinkedIn

Continuous Martingale with Finite Variation is Constant

🌱

Definition
StochasticDiffs

Let (Xt)t0(X_{t})_{t\ge 0} be a continuous (Ft)t0(\mathcal{F}_{t})_{t\ge 0}-martingale on (Ω,F,P)(\Omega,\mathcal{F},P). Assume that ωΩ:tXt(ω)\forall\omega\in\Omega: t\mapsto X_{t}(\omega) has Variation on R+\mathbb{R}^{+}. Then t0:Xt=X0 a.s.\forall t\ge 0:X_{t}=X_{0}\text{ a.s.}

Linked from