FIND ME ON

GitHub

LinkedIn

Riemann-Stieltjes Integral

🌱

Definition
StochasticDiffs

Definition

Another system of interest is modelled by the discrete evolution equation of the form x(ti+1)=x(ti)+f(ti,x(ti))(g(ti+1)g(ti))  i=0,N1x(t_{i+1})=x(t_{i})+f(t_{i},x(t_{i}))(g(t_{i+1})-g(t_{i})) \ \ i=0,\dots N-1“In the limit” as (t0,,tN)[0,1](t_{0},\dots,t_{N})\in[0,1] gets finer we obtain x(t)=x(0)+0tf(s,x(s))dg(s),  t[0,1]x(t)=x(0)+\int\limits _{0}^{t} f(s,x(s))\, dg(s), \ \ t\in[0,1]where the integral is the Riemann-Stieltjes Integral where g:[0,1]Rg:[0,1]\to \mathbb{R} ## Note If gC1g\in C^1 then then integral becomes 0tf(s,x(s))g(s)ds\int\limits _{0}^{t} f(s,x(s))g'(s) \, ds

Linked from