FIND ME ON

GitHub

LinkedIn

(Ɛ) Simple Predicable Processes

🌱

Definition
StochasticDiffs

Definition

We denote by E\mathcal{E} the set of all processes of the form X=i=1nai1(si,ti]×Fi+k=1ndk1{0}×F0k(★)\tag{★}X=\sum_{i=1}^{n}a_{i}\mathbb{1}_{(s_{i},t_{i}]\times F_{i}}+\sum_{k=1}^{n}d_{k}\mathbb{1}_{\{ 0 \}\times F_{0k}}where 0si<ti,FiFsi,i=1,,n0\le s_{i}<t_{i}, F_{i}\in\mathcal{F}_{s_{i}}, \forall i=1,\dots,n and F0kF0,k=1,,nF_{0k}\in\mathcal{F}_{0}, \forall k=1,\dots,n. We call E\mathcal{E} the set of R\mathcal{R}-simple processes or the space of elementary predictable processes

Note

In (★) all the (si,ti]×Fi(s_{i},t_{i}]\times F_{{i}} can be assumed WLOG to be pairwise disjoint.

Linked from