FIND ME ON

GitHub

LinkedIn

(R) Set of Predictable Rectangles

🌱

Definition
StochasticDiffs

Let X=(Xn)nNX=(X_{n})_{n\in\mathbb{N}} be a process. Let (Fn)nN(\mathcal{F}_{n})_{n\in\mathbb{N}} be a filtration on (Ω,F,P)(\Omega,\mathcal{F},P). XX is a (Fn)nN(\mathcal{F}_{n})_{n\in\mathbb{N}}-predictable process if X0 is F0measurable and Xn is Fn1measurable, n1\begin{align*} X_{0}\text{ is }\mathcal{F}_{0}-\text{measurable and }X_{n}\text{ is }\mathcal{F}_{n-1}-\text{measurable}, \ \forall n&\ge 1 \end{align*}

We denote R\mathcal{R} as the set of subsets of R+×Ω\mathbb{R}^{+}\times\Omega of the form {0}×F0\{ 0 \}\times F_{0} with F0F0F_{0}\in\mathcal{F}_{0} and (s,t]×F,0s<t,FFs(s,t]\times F,0\le s<t, \forall F\in\mathcal{F}_{s}. R\mathcal{R} is called the set of predictable rectangles.

Linked from