FIND ME ON

GitHub

LinkedIn

Bichteler-Dellacherie Theorem

🌱

Theorem
StochasticDiffs

Theorem

Let Eb\mathcal{E}_{b} (bb for bounded, E\mathcal{E} for simple predictable processes) be the space of processes of the form X=H01(t0,t1]+H11(t1,t2]++Hk1(tk,tk+1]X=H_{0}\mathbb{1}_{(t_{0},t_{1}]}+H_{1}\mathbb{1}_{(t_{1},t_{2}]}+\dots+H_{k}\mathbb{1}_{(t_{k},t_{k+1}]}where HiH_{i} is Fti\mathcal{F}_{t_{i}}-measurable i\forall i, and XX uniformly bounded. Define I:EbL0(Ω,F,P)\mathcal{I}:\mathcal{E}_{b}\to L^{0}(\Omega,\mathcal{F},P) and let M=(Mt)t0M=(M_{t})_{t\ge 0} s.t. I(X)=H0(Mt1Mt0)++Hk(Mtk+1Mtk)\mathcal{I}(X)=H_{0}(M_{t_{1}}-M_{t_{0}})+\dots+H_{k}(M_{t_{k+1}}-M_{t_{k}})I\mathcal{I} is Continuous (for uniform convergence on Eb\mathcal{E}_{b} and convergence in probability in C0C^{0}) if and only if MM is a semimartingale. i.e. I continuous    M semimartingale\mathcal{I}\text{ continuous}\iff M\text{ semimartingale}