NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let M=(Mt)t≥0M=(M_{t})_{t\ge 0}M=(Mt)t≥0 be a right continuous L2L^{2}L2-martingale. We have that the Itô Isometry holds ∀X∈L2(R+×Ω,P,μM)\forall X\in L^{2}(\mathbb{R}^{+}\times\Omega,\mathscr{P},\mu_{M})∀X∈L2(R+×Ω,P,μM) where E[(∫X dM)2]=∫R+×ΩX2 dμME\left[ \left( \int\limits X \, dM \right)^{2} \right]=\int\limits _{\mathbb{R}^{+}\times\Omega}X^{2} \, d\mu_{M}E[(∫XdM)2]=R+×Ω∫X2dμMor ∥∫X dM∥L2(Ω,F,P)=∥X∥L2(R+×Ω,P,μm)\left\lVert \int\limits X \, dM \right\rVert _{L^{2}(\Omega,\mathcal{F},P)}=\lVert X \rVert _{L^{2}(\mathbb{R}^{+}\times\Omega,\mathscr{P},\mu_{m})}∫XdML2(Ω,F,P)=∥X∥L2(R+×Ω,P,μm)
Itô Isometry
Stopping Time Integral