FIND ME ON

GitHub

LinkedIn

Itô Isometry v3

🌱

Theorem
StochasticDiffs

Proposition

Let M=(Mt)t0M=(M_{t})_{t\ge 0} be a right continuous L2L^{2}-martingale. We have that the Itô Isometry holds XL2(R+×Ω,P,μM)\forall X\in L^{2}(\mathbb{R}^{+}\times\Omega,\mathscr{P},\mu_{M}) where E[(XdM)2]=R+×ΩX2dμME\left[ \left( \int\limits X \, dM \right)^{2} \right]=\int\limits _{\mathbb{R}^{+}\times\Omega}X^{2} \, d\mu_{M}or XdML2(Ω,F,P)=XL2(R+×Ω,P,μm)\left\lVert \int\limits X \, dM \right\rVert _{L^{2}(\Omega,\mathcal{F},P)}=\lVert X \rVert _{L^{2}(\mathbb{R}^{+}\times\Omega,\mathscr{P},\mu_{m})}

Linked from