FIND ME ON

GitHub

LinkedIn

Stopping Time Integral

🌱

Theorem
StochasticDiffs

Theorem

Let MM be a right continuous L2L^{2}-martingale, let XΛ2(P,M)X\in\Lambda^{2}(\mathscr{P},M), and let (Yt)t0(Y_{t})_{t\ge 0} be the stochastic integral process Yt=1[0,t]XdMY_{t}=\int\limits \mathbb{1}_{[0,t]}X \, dM Let τ\tau be a bounded stopping time. Then Yτ=1<spanclass="wikilinkunresolved"title="Notenotpublished">0,τ</span>XdM a.s.Y_{\tau}=\int\limits \mathbb{1}_{<span class="wikilink-unresolved" title="Note not published">0,\tau</span>}X \, dM\text{ a.s.} ## Proof The proof uses: - Itô Stochastic Integral on Λ is a R.C. Martingale - Predictable Stochastic Intervals - Dominated Convergence Theorem - Itô Isometry v3