NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let MMM be a right continuous L2L^{2}L2-martingale. Let X∈Λ2(P,M)X\in\Lambda^{2}(\mathscr{P},M)X∈Λ2(P,M). ∀t≥0\forall t\ge 0∀t≥0 let Yt=∫1[0,t]X dMY_{t}=\int\limits \mathbb{1}_{[0,t]}X \, dM Yt=∫1[0,t]XdMThen (Yt)t≥0(Y_{t})_{t\ge 0}(Yt)t≥0 is a L2L^{2}L2-martingale and hence admits a right continuous version.
Stopping Time Integral