FIND ME ON

GitHub

LinkedIn

Principle of Uniform Boundedness

🌱

Theorem
FunctionalAnalStochasticDiffs

Let (X,X),(Y,Y)(X,\lVert \cdot \rVert_{X}),(Y,\lVert \cdot \rVert_{Y}) be Banach spaces. Let (ϕα)αΛ(\phi_{\alpha})_{\alpha\in\Lambda} be a family of continuous linear mappings s.t. ϕα:XY\phi_{\alpha}:X\to Y. Assume xX:supαΛϕα(x)Y<\forall x\in X: \sup_{\alpha\in\Lambda}\lVert \phi_{\alpha}(x) \rVert_{Y}<\infty. Then supαΛϕαop<\sup_{\alpha\in\Lambda}\lVert \phi_{\alpha} \rVert _{\text{op}}<\inftywhere ϕαop=supxX1ϕα(x)Y\lVert \phi_{\alpha} \rVert _{\text{op}}=\sup_{\lVert x \rVert _{X}\le 1}\lVert \phi_{\alpha}(x) \rVert _{Y}

Linked from