NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (X,∥⋅∥X),(Y,∥⋅∥Y)(X,\lVert \cdot \rVert_{X}),(Y,\lVert \cdot \rVert_{Y})(X,∥⋅∥X),(Y,∥⋅∥Y) be Banach spaces. Let (ϕα)α∈Λ(\phi_{\alpha})_{\alpha\in\Lambda}(ϕα)α∈Λ be a family of continuous linear mappings s.t. ϕα:X→Y\phi_{\alpha}:X\to Yϕα:X→Y. Assume ∀x∈X:supα∈Λ∥ϕα(x)∥Y<∞\forall x\in X: \sup_{\alpha\in\Lambda}\lVert \phi_{\alpha}(x) \rVert_{Y}<\infty∀x∈X:supα∈Λ∥ϕα(x)∥Y<∞. Then supα∈Λ∥ϕα∥op<∞\sup_{\alpha\in\Lambda}\lVert \phi_{\alpha} \rVert _{\text{op}}<\inftyα∈Λsup∥ϕα∥op<∞where ∥ϕα∥op=sup∥x∥X≤1∥ϕα(x)∥Y\lVert \phi_{\alpha} \rVert _{\text{op}}=\sup_{\lVert x \rVert _{X}\le 1}\lVert \phi_{\alpha}(x) \rVert _{Y}∥ϕα∥op=∥x∥X≤1sup∥ϕα(x)∥Y
Itô Isometry