NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (X,F,μ)(X,\mathcal{F},\mu)(X,F,μ) be a measure space. Let f∈L1(X,F,μ)f\in\mathscr{L}^{1}(X,\mathcal{F},\mu)f∈L1(X,F,μ). Then ∀ϵ>0 ∃δ>0 s.t. ∀A∈F\forall\epsilon>0 \ \exists\delta>0\text{ s.t. }\forall A\in\mathcal{F}∀ϵ>0 ∃δ>0 s.t. ∀A∈F μ(A)≤δ ⟹ ∫A∣f∣ dμ≤ϵ\mu(A)\le\delta \implies \int\limits _{A}|f| \, d\mu\le\epsilon μ(A)≤δ⟹A∫∣f∣dμ≤ϵi.e. The Lebesgue Integral is absolutely continuous w.r.t. the Lebesgue Measure ∫ dμ≪μ\int\limits \, d\mu\ll\mu∫dμ≪μ