FIND ME ON

GitHub

LinkedIn

Absolute Continuity of Lebesgue Integral

🌱

Theorem
MeasureTheory

Let (X,F,μ)(X,\mathcal{F},\mu) be a measure space. Let fL1(X,F,μ)f\in\mathscr{L}^{1}(X,\mathcal{F},\mu). Then ϵ>0 δ>0 s.t. AF\forall\epsilon>0 \ \exists\delta>0\text{ s.t. }\forall A\in\mathcal{F} μ(A)δ    Afdμϵ\mu(A)\le\delta \implies \int\limits _{A}|f| \, d\mu\le\epsilon i.e. The Lebesgue Integral is absolutely continuous w.r.t. the Lebesgue Measure dμμ\int\limits \, d\mu\ll\mu