FIND ME ON

GitHub

LinkedIn

Lebesgue Measurable

🌱

Definition
MeasureTheory

Definition (891)

Suppose μ\mu^{*} is an outer measure on XX. We say AXA\subseteq X is μ\mu^{*}-measurable if and only if EX:μ(E)=μ(EA)+μ(EAc)\forall E\subseteq X:\mu^{*}(E)=\mu^{*}(E\cap A)+\mu^{*}(E\cap A^{c}) # Definition (437) Let λ:P(X)[0,]\lambda^{*}:\mathcal{P}(X)\to[0,\infty] denote the Lebesgue Outer Measure on XX, and let AXA\subset X. Then AA is λ\lambda^{*}-measurable or Carathéodory-measurable or Lebesgue-measurable if and only if λ(E)=λ(EA)+λ(EAc)\lambda^{*}(E)=\lambda^{*}(E\cap A)+\lambda^{*}(E\cap A^{c})EX\forall E\subset X. We denote the σ-algebra of Lebesgue Measurable sets as M(λ)\mathcal{M}(\lambda^*).

Note

We don’t require EE to be a measurable set.

Linked from