NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let λ∗:P(X)→[0,∞]\lambda^{*}:\mathcal{P}(X)\to[0,\infty]λ∗:P(X)→[0,∞] is an outer measure, then: - M(λ∗):={A⊂X:A λ∗\mathcal{M}(\lambda^{*}):=\{ A\subset X:A \ \ \lambda^{*}M(λ∗):={A⊂X:A λ∗-measurable}\}} is a σ-algebra. - λ:M(λ∗)→[0,∞]\lambda:\mathcal{M}(\lambda^{*})\to[0,\infty]λ:M(λ∗)→[0,∞] is a measure.
Measurability of Continuous Functions
Coin Tossing Probability Space