FIND ME ON

GitHub

LinkedIn

Outer Measure

🌱

Definition
MeasureTheory

Definition

The map μ:2XR+\mu^{*}:2^{X}\to\overline{\mathbb{R}}_{+} is an outer measure if: 1. μ()=0\mu^{*}(\emptyset)=0 2. Monotonicity: AB    μ(A)μ(B)A\subset B\implies \mu^{*}(A)\le\mu^{*}(B) 3. Countable Subadditivity: A1,A2,2X    μ(n=1An)n=1μ(An)A_{1},A_{2},\dots\in2^{X}\implies \mu^{*}\left( \bigcup_{n=1}^\infty A_{n} \right)\le\sum_{n=1}^{\infty}\mu^{*}(A_{n})

Linked from