NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
The map μ∗:2X→R‾+\mu^{*}:2^{X}\to\overline{\mathbb{R}}_{+}μ∗:2X→R+ is an outer measure if: 1. μ∗(∅)=0\mu^{*}(\emptyset)=0μ∗(∅)=0 2. Monotonicity: A⊂B ⟹ μ∗(A)≤μ∗(B)A\subset B\implies \mu^{*}(A)\le\mu^{*}(B)A⊂B⟹μ∗(A)≤μ∗(B) 3. Countable Subadditivity: A1,A2,⋯∈2X ⟹ μ∗(⋃n=1∞An)≤∑n=1∞μ∗(An)A_{1},A_{2},\dots\in2^{X}\implies \mu^{*}\left( \bigcup_{n=1}^\infty A_{n} \right)\le\sum_{n=1}^{\infty}\mu^{*}(A_{n})A1,A2,⋯∈2X⟹μ∗(n=1⋃∞An)≤n=1∑∞μ∗(An)
A Summary of MATH 891
Lebesgue-Stieltjes Measure
Lebesgue Measurable σ-algebra
Lebesgue Measurable
Carathéodory Theorem
Construction of Outer Measure from Pre-measure
Hopf's Extension Theorem
Lebesgue Outer Measure
Extension Theorem