FIND ME ON

GitHub

LinkedIn

Lebesgue Outer Measure

🌱

Theorem
MeasureTheory

Let K\mathcal{K} be a sequential covering class of XX, and let λ:K[0,+]\lambda:\mathcal{K}\to[0,+\infty] be such that λ()=0\lambda(\emptyset)=0. For each AXA\subseteq X, let μ(A):=inf{k=1λ(Ek):(Ek)k1K s.t. Ak=1Ek}\mu^{*}(A):=\inf\left\{ \sum_{k=1}^{\infty}\lambda(E_{k}):(E_{k})_{k\ge 1}\subseteq K\text{ s.t. }A\subseteq \bigcup_{k=1}^{\infty}E_{k} \right\}then μ\mu^{*} is an outer measure on XX. # Theorem (437) For any interval I=a,bRI=|a,b|\subset \mathbb{R} let l(I)=ba\mathscr{l}(I)=b-a denote its length. For any subset ERE\subset \mathbb{R} we define the Lebesgue Outer Measure as: λ(E)=inf{k=0λ(Ik):(Ik)kNRI & Ek=0Ik}\lambda^{*}(E)=\inf\left\{ \sum_{k=0}^{\infty}\lambda(I_{k}):(I_{k})_{k\in\mathbb{N}}\in R_{I}\ \& \ E \subset \bigcup_{k=0}^\infty I_{k} \right\}AP(X)\forall A\in\mathcal{P}(X).

Intuition

You can see here the reason why it is called the “outer” measure as we’re kinda squeezing the cover of EE from the outside until its close enough to be pretty much the measure of EE.

Linked from