FIND ME ON

GitHub

LinkedIn

Sequential Covering Class

🌱

Definition
MeasureTheory

Definition

Let XX be a set. We say that KāŠ†2X\mathcal{K}\subseteq 2^{X} is a sequential covering class of XX if and only if 1. āˆ…āˆˆK\emptyset\in\mathcal{K} 2. āˆ€AāŠ†X, ∃(Ek)k≄1āŠ†K:AāŠ†āˆŖk=1āˆžEk\forall A\subseteq X,\ \exists(E_{k})_{k\ge 1}\subseteq \mathcal{K}:A\subseteq \cup_{k=1}^{\infty}E_{k} ## Examples 1. X=R, K={[a,b):a<b}X=\mathbb{R},\,\mathcal{K}=\{ [a,b):a<b \} 2. X=Rn, K={[a1,b1)×⋯×[an,bn),a1<b1,…,an<bn}X=\mathbb{R}^{n},\, \mathcal{K}=\{ [a_{1},b_{1})\times\dots \times[a_{n},b_{n}),a_{1}<b_{1},\dots,a_{n}<b_{n} \}

Linked from