NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (X,M,μ)(X,\mathscr{M},\mu)(X,M,μ) be a measure space. 1. Suppose f:X→[0,+∞]f:X\to[0,+\infty]f:X→[0,+∞] is a measurable function and E∈ME\in\mathscr{M}E∈M is s.t. ∫Ef dμ=0\int\limits _{E}f \, d\mu=0 E∫fdμ=0then f=0f=0f=0 a.e. on EEE 2. If fff is integrable and ∫Ef dμ=0∀E∈M\int\limits _{E}f \, d\mu =0\quad \forall E\in\mathscr{M}E∫fdμ=0∀E∈Mthen f=0f=0f=0 a.e. 3. If fff is integrable and ∣∫f dμ∣=∫∣f∣ dμ\left|\int\limits f \, d\mu \right|=\int\limits |f| \, d\mu ∫fdμ=∫∣f∣dμthen ∃θ∈[0,2π)\exists\theta \in[0,2\pi)∃θ∈[0,2π) s.t. eiθf=∣f∣e^{i\theta}f=|f|eiθf=∣f∣ a.e.
A Summary of MATH 891