FIND ME ON

GitHub

LinkedIn

Integrals of Functions that are Zero a.e.

🌱

Theorem
MeasureTheory

Let (X,M,μ)(X,\mathscr{M},\mu) be a measure space. 1. Suppose f:X[0,+]f:X\to[0,+\infty] is a measurable function and EME\in\mathscr{M} is s.t. Efdμ=0\int\limits _{E}f \, d\mu=0 then f=0f=0 a.e. on EE 2. If ff is integrable and Efdμ=0EM\int\limits _{E}f \, d\mu =0\quad \forall E\in\mathscr{M}then f=0f=0 a.e. 3. If ff is integrable and fdμ=fdμ\left|\int\limits f \, d\mu \right|=\int\limits |f| \, d\mu then θ[0,2π)\exists\theta \in[0,2\pi) s.t. eiθf=fe^{i\theta}f=|f| a.e.

Linked from