FIND ME ON

GitHub

LinkedIn

S is dense in Lp

🌱

Theorem
MeasureTheory

Let 1p<1\le p <\infty and let (X,M,μ)(X,\mathscr{M},\mu) be a measure space. Let S:={f:XC:f measurable, f(X) is a finite set, and μ({xX:f(x)0})<}S:=\{ f:X\to \mathbb{C}:f\text{ measurable, }f(X)\text{ is a finite set, and }\mu(\{ x \in X:f(x)\not= 0 \})<\infty\}then SS is a Dense subspace in Lp(X,M,μ)L^{p}(X,\mathscr{M},\mu) .

Linked from