NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let 1≤p<∞1\le p <\infty1≤p<∞ and let (X,M,μ)(X,\mathscr{M},\mu)(X,M,μ) be a measure space. Let S:={f:X→C:f measurable, f(X) is a finite set, and μ({x∈X:f(x)≠0})<∞}S:=\{ f:X\to \mathbb{C}:f\text{ measurable, }f(X)\text{ is a finite set, and }\mu(\{ x \in X:f(x)\not= 0 \})<\infty\}S:={f:X→C:f measurable, f(X) is a finite set, and μ({x∈X:f(x)=0})<∞}then SSS is a Dense subspace in Lp(X,M,μ)L^{p}(X,\mathscr{M},\mu)Lp(X,M,μ) .
A Summary of MATH 891