FIND ME ON

GitHub

LinkedIn

Dense

🌱

Definition
AnalysisFunctionalAnal

A subset AāŠ‚XA\subset X of a topological space is dense if cl(A)=X.\text{cl}(A)=X.

Let BB be a Metric Space, and let AāŠ‚BA\subset B. AA is dense in BB if: āˆ€a∈A, ϵ>0,ā€‰āˆƒb∈B:∄aāˆ’bāˆ„ā‰¤Ļµ\forall a\in A, \,\epsilon>0,\,\exists b\in B:\lVert a-b \rVert \le \epsilon ## Intuition An analogous way of stating this is saying that there exist sequences (an)n∈NāŠ‚A(a_{n})_{n\in\mathbb{N}}\subset A s.t. lim⁔nā†’āˆžan∈B\lim_{ n \to \infty }a_{n}\in B.

Linked from