FIND ME ON

GitHub

LinkedIn

Fatou's Lemma

🌱

Theorem
MeasureTheory

Theorem 1.28

Let (X,F,μ)(X,\mathcal{F},\mu) be a measure space. Let Let (fn)nN(f_{n})_{n\in\mathbb{N}} be a sequence of measurable functions, fn:XR+f_{n}:X\to \mathbb{R}^{+}. Then, Xlim infnfndμlim infnXfndμ\int\limits_{X} \liminf_{ n \to \infty } f_{n} \, d\mu\le\liminf_{ n \to \infty } \int\limits_{X} f_{n} \, d\mu

Linked from