NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (X,M,μ)(X,\mathscr{M},\mu)(X,M,μ) be a measure space, and let f,g:X→[0,+∞]f,g:X\to[0,+\infty]f,g:X→[0,+∞] be measurable functions. Let 1<p<∞1<p<\infty1<p<∞, then (∫(f+g)p dμ)1/p≤(∫fp dμ)1/p+(∫gp dμ)1/p\left( \int\limits (f+g)^{p} \, d\mu \right)^{1/p}\le\left( \int\limits f^{p} \, d\mu \right)^{1/p}+\left( \int\limits g^{p} \, d\mu \right)^{1/p}(∫(f+g)pdμ)1/p≤(∫fpdμ)1/p+(∫gpdμ)1/p or equivalently: Let 1≤p≤∞1\le p \le \infty1≤p≤∞ and f,g∈Lp(X,M,μ)f,g\in L^{p}(X,\mathscr{M},\mu)f,g∈Lp(X,M,μ), then f+g∈Lp(X,M,μ)f+g\in L^{p}(X,\mathscr{M},\mu)f+g∈Lp(X,M,μ) and ∥f+g∥p≤∥f∥p+∥g∥p\|f+g\|_{p}\le\|f\|_{p}+\|g\|_{p}∥f+g∥p≤∥f∥p+∥g∥p
A Summary of MATH 891