FIND ME ON

GitHub

LinkedIn

Minkowski's Inequality

🌱

Theorem
MeasureTheory

Let (X,M,μ)(X,\mathscr{M},\mu) be a measure space, and let f,g:X[0,+]f,g:X\to[0,+\infty] be measurable functions. Let 1<p<1<p<\infty, then ((f+g)pdμ)1/p(fpdμ)1/p+(gpdμ)1/p\left( \int\limits (f+g)^{p} \, d\mu \right)^{1/p}\le\left( \int\limits f^{p} \, d\mu \right)^{1/p}+\left( \int\limits g^{p} \, d\mu \right)^{1/p} or equivalently: Let 1p1\le p \le \infty and f,gLp(X,M,μ)f,g\in L^{p}(X,\mathscr{M},\mu), then f+gLp(X,M,μ)f+g\in L^{p}(X,\mathscr{M},\mu) and f+gpfp+gp\|f+g\|_{p}\le\|f\|_{p}+\|g\|_{p}

Linked from