FIND ME ON

GitHub

LinkedIn

σ-algebra containing all Borel subsets

🌱

Definition
MeasureTheory

Definition

Let (X,M,μ)(X,\mathscr{M},\mu) be a measure space, and let f:XRf:X\to \mathbb{R} be a M\mathscr{M}-measurable function. Consider N={ER:f1(E)M}\mathscr{N}=\{ E\subseteq \mathbb{R}:f^{-1}(E)\in\mathscr{M} \}. We say that N\mathscr{N} is a σ-algebra containing all Borel subsets of R\mathbb{R}.

Linked from