NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (X,M,μ)(X,\mathscr{M},\mu)(X,M,μ) be a measure space, and let f:X→Rf:X\to \mathbb{R}f:X→R be a M\mathscr{M}M-measurable function. Let N\mathscr{N}N be the σ-algebra containing all Borel subsets of R\mathbb{R}R. Now define μf:N→[0,+∞]\mu_{f}:\mathscr{N}\to[0,+\infty]μf:N→[0,+∞] as μf(E):=μ(f−1(E))E∈N\mu_{f}(E):=\mu(f^{-1}(E))\quad E\in\mathscr{N}μf(E):=μ(f−1(E))E∈NThen μf\mu_{f}μf is a measure and it is called the law of fff.
A Summary of MATH 891
Distribution