FIND ME ON

GitHub

LinkedIn

Monotone Convergence Theorem

🌱

Theorem
MeasureTheory

Theorem 1.26

Let (fn)nN(f_{n})_{n\in\mathbb{N}} be a sequence of measurable functions, fn:XR+f_{n}:X\to \mathbb{R}^{+} in measure space (X,F,μ)(X,\mathcal{F},\mu). Assume fnff_{n}\uparrow f pointwise i.e. 0f0f1fnf0\le f_{0}\le f_{1}\le\dots\le f_{n}\le\dots fthen, limnXfndμ=Xfdμ\lim_{ n \to \infty } \int\limits _{X}f_{n} \, d\mu=\int\limits _{X}f \, d\mu # Proof First we note using the fact that limits of measurable functions are measurable that ff is measurable.

Then, since 0fnfn+10\le f_{n}\le f_{n+1} n\forall n, then 0fndμfn+1dμ0\le\int\limits f_{n} \, d\mu\le\int\limits f_{n+1} \, d\mu since ν\nu is a measure. Hence, (fndμ)nN\left( \int\limits f_{n} \, d\mu \right)_{n\in\mathbb{N}} has a limit in Rˉ\bar{\mathbb{R}}.

Now let α=limn(fndμ)Rˉ\alpha=\lim_{ n \to \infty }\left( \int\limits f_{n} \, d\mu \right)\in \bar{\mathbb{R}}, we WTS fdμ=α\int\limits f \, d\mu =\alpha


Since n1\forall n\ge 1, 0fnf0\le f_{n}\le f then 0fndμfdμ0limnfndμfdμ0αfdμ\begin{gather} 0\le &\int\limits f_{n} \, d\mu &\le &\int\limits f \, d\mu \\ 0\le &\lim_{ n \to \infty } \int\limits f_{n} \, d\mu &\le &\int\limits f \, d\mu\\ 0\le &\alpha &\le &\int\limits f \, d\mu \end{gather}Now TS αfdμ\alpha\ge \int\limits f \, d\mu we instead show 0<c<1:cfdμα\forall 0<c<1:c\int\limits f \, d\mu \le \alpha

Linked from