FIND ME ON

GitHub

LinkedIn

Central Limit Theorem

🌱

Theorem

For XX be an rv with XμX\sim\mu. The characteristic function is defined as φX(t)=E[eitX]=E[costX]+iE[sintX]=Reitxμ(dx)\varphi_{X}(t)=\mathbb{E}[e^{itX}]=\mathbb{E}[\cos tX]+i\mathbb{E}[\sin tX]=\int\limits _{\mathbb{R}}e^{itx} \, \mu(dx)

For aR,b>0a\in \mathbb{R},b>0 constants, and for any rv XX φa+bX(t)=eiatφbX(t)\varphi_{a+bX}(t)=e^{iat}\varphi_{bX}(t)

\begin{proof} φa+bX(t)=E[eitaeitbX]=eitaE[eitbX]=eitaφbX(t)\varphi_{a+bX}(t)=\mathbb{E}[e^{ita}e^{itbX}]=e^{ita}\mathbb{E}[e^{itbX}]=e^{ita}\varphi_{bX}(t) \end{proof}

If X1 ⁣ ⁣ ⁣X2X_{1}\perp\!\!\!\perp X_{2}: φX1+X2(t)=φX1(t)φX2(t)\varphi_{X_{1}+X_{2}}(t)=\varphi_{X_{1}}(t)\cdot\varphi_{X_{2}}(t)

\begin{proof} φX1+X2=E[eitX1eitX2]=E[eitX1]E[eitX2]=φX1(t)φX2(t)\varphi_{X_{1}+X_{2}}=\mathbb{E}[e^{itX_{1}}e^{itX_{2}}]=\mathbb{E}[e^{itX_{1}}]\mathbb{E}[e^{itX_{2}}]=\varphi_{X_{1}}(t)\varphi_{X_{2}}(t)where the second equality is due to independence \end{proof}

For fL1(R,B,λ)f\in L^{1}(\mathbb{R},\mathcal{B},\lambda) the Fourier transform is defined as f^(t)=Reituf(u)du\hat{f}(t)=\int\limits_{\mathbb{R}}e^{itu}f(u) \, du and for gL1(R,B,λ)g\in L^{1}(\mathbb{R},\mathcal{B},\lambda) the Fourier inverse is defined as gˇ(x)=12πReitxg(t)dt\check{g}(x)=\frac{1}{2\pi}\int\limits _{\mathbb{R}}e^{-itx}g(t) \, dt

If h(u)=hμ,σ(u)=12πσe(uμ)2/2σ2h(u)=h_{\mu,\sigma}(u)=\frac{1}{\sqrt{ 2\pi }\sigma}e^{-(u-\mu)^{2}/2\sigma^{2}} then (h^)ˇ(x)=h(x)xR\check{(\hat{h})}(x)=h(x)\quad\forall x\in \mathbb{R}

\begin{proof} First note that for ZN(0,1)Z\sim \mathcal{N}(0,1) we have: φZ(t)=EZ[eitZ]=Reitueu22πdu=et2/2Re(uit)2/22πdu=et22Reu222πdu=et22\begin{align*} \varphi_{Z}(t)&= \mathbb{E}_{Z}[e^{itZ}]=\int\limits _{\mathbb{R}}e^{itu} \frac{e^{-u^{2}}}{\sqrt{ 2\pi }} \, du\\ &= e^{t^{2}/2}\int\limits_{\mathbb{R}} \frac{e^{-(u-it)^{2}/2}}{\sqrt{ 2\pi }} \, du\\ &= e^{\frac{t^{2}}{2}}\int\limits _{\mathbb{R}} \frac{e^{\frac{-u^{2}}{2}}}{\sqrt{ 2\pi }} \, du \\ &= e^{\frac{t^{2}}{2}} \end{align*}

Then note that WN(μ,σ2)μ+σN(0,1)W\sim \mathcal{N}(\mu,\sigma^{2})\equiv\mu+\sigma \mathcal{N}(0,1), hence: φW(t)=φμ+σZ=eiμteσ2t22\varphi_{W}(t)=\varphi_{\mu+\sigma Z}=e^{i\mu t}e^{-\frac{\sigma^{2}t^{2}}{2}}

so h^(t)=Reitu12πe(uμ)2/2σ2du=φN(μ,σ2)(t)=eiμteσ2t22\begin{align*} \hat{h}(t)&= \int\limits _{\mathbb{R}}e^{itu} \frac{1}{\sqrt{ 2\pi }}e^{-(u-\mu)^{2}/2\sigma^{2}} \, du \\ &=\varphi_{\mathcal{N}(\mu,\sigma^{2})}(t)\\ &= e^{i\mu t}e^{-\frac{\sigma^{2}t^{2}}{2}} \end{align*} so h^ˇ(x)=12πReiμteσ2t22eitxdt=12πσReit(μx)et22σ22πσ1dx=12πσφN(0,σ2)(μx)=12πσe(xμ)22σ2\begin{align*} \check{\hat{h}}(x)&= \frac{1}{2\pi}\int\limits _{\mathbb{R}}e^{i\mu t}e^{\frac{-\sigma^{2}t^{2}}{2}}e^{-itx} \, dt\\ &= \frac{1}{\sqrt{ 2\pi }\sigma}\int\limits_{\mathbb{R}} e^{it(\mu-x)}\frac{e^{\frac{-t^{2}}{2\sigma^{-2}}}}{\sqrt{ 2\pi }\sigma^{-1}} \, dx \\ &= \frac{1}{\sqrt{ 2\pi }\sigma}\varphi_{\mathcal{N}(0,\sigma^{-2})}(\mu-x)\\ &= \frac{1}{\sqrt{ 2\pi }\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} \end{align*}

\end{proof}

Let V=span{hμ,σ:μR,σ>0}V=\text{span}\{ h_{\mu,\sigma}:\mu \in \mathbb{R},\sigma>0 \}. Then for any fVf\in V, we have f^ˇ=f and fˇ^=f\check{\hat{f}}=f\text{ and }\hat{\check{f}}=f

For X1,X2,,XX_{1},X_{2},\dots,X rvs. XndX    limnφXn(t)=φX(t)tRX_{n}\xrightarrow{d}X\iff\lim_{ n \to \infty } \varphi_{X_{n}}(t)=\varphi_{X}(t)\quad \forall t\in \mathbb{R}

\begin{proof} We first state and prove this lemma: >[!lem] >For any ψCc2(R)\psi \in C_{c}^{2}(\mathbb{R}), there is fVf\in V such that ϵ>0\forall\epsilon>0: ψ(x)f(x)<ϵxR|\psi(x)-f(x)|<\epsilon\quad \forall x\in \mathbb{R}

then by Portmanteau’s Theorem we have XndX    E[eitXn]E[eitX]X_{n}\xrightarrow{d}X\implies \mathbb{E}[e^{itX_{n}}]\to \mathbb{E}[e^{itX}] and for converse we suppose E[eitXn]E[eitX],t\mathbb{E}[e^{itX_{n}}]\to \mathbb{E}[e^{itX}],\,\forall t. Then: For fVf\in V, we show that E[f(Xn)]E[f(X)]\mathbb{E}[f(X_{n})]\to \mathbb{E}[f(X)]: Let g(t)=fˇ(t)g(t)=\check{f}(t). Then f(x)=Reitxg(t)dtf(x)=\int\limits _{\mathbb{R}} e^{itx}g(t) \, dt hence Rg(t)E[eitXn]dt=E[eitXng(t)dt]=E[f(Xn)]\int\limits _{\mathbb{R}}g(t)\mathbb{E}[e^{itX_{n}}] \, dt =\mathbb{E}\left[ \int\limits e^{itX_{n}}g(t) \, dt \right]=\mathbb{E}[f(X_{n})]where we can swap order of integration by Fubini-Tonelli and g(t)E[eitX]dt=E[f(X)]\int\limits g(t)\mathbb{E}[e^{itX}] \, dt =\mathbb{E}[f(X)]we note that g(t)E[eitXn]g(t)L1(R)n\left| g(t)\mathbb{E}[e^{itX_{n}}] \right| \le |g(t)|\in L^{1}(\mathbb{R})\quad\forall nhence by Dominated Convergence Theorem we have limnE[f(Xn)]=E[f(X)]\lim_{ n \to \infty } \mathbb{E}[f(X_{n})]=\mathbb{E}[f(X)] Now, for ψCc2(R)\psi \in C_{c}^{2}(\mathbb{R}) we show that limnE[ψ(Xn)]=E[ψ(X)]\lim_{ n \to \infty }\mathbb{E}[\psi(X_{n})]=\mathbb{E}[\psi(X)]: For ϵ>0\epsilon>0 arbitrary, find fVf\in V s.t. ψ(x)<f(x)<ϵx|\psi(x)<f(x)|<\epsilon\quad\forall x This implies E[ψ(X)]E[f(X)]<ϵ\left| \mathbb{E}[\psi(X)]-\mathbb{E}[f(X)] \right|<\epsilonwith the same for XnX_{n}. Hence, E[ψ(Xn)]E[ψ(X)]=E[f(Xn)]E[f(X)]+O2(ϵ)0\mathbb{E}[\psi(X_{n})]-\mathbb{E}[\psi(X)]=\mathbb{E}[f(X_{n})]-\mathbb{E}[f(X)]+\mathcal{O}_{\le 2}(\epsilon)\to0 by Portmanteau’s Theorem we have XndXX_{n}\xrightarrow{d}X. \end{proof}

If X,YX,Y are rvs such that φY(t)=φX(t),t\varphi_{Y}(t)=\varphi_{X}(t),\forall t then YXY\sim X

\begin{proof} Set Xn=YX_{n}=Y for all nn. \end{proof}

For rv XLkX\in L^{k} for k1k\ge 1 ddtφX(t)=iE[XeitX]k\frac{d^{\ell}}{dt^{\ell}}\varphi_{X}(t)=i^{\ell}\mathbb{E}[X^{\ell}e^{itX}]\quad \ell\le k

\begin{proof}

\end{proof}

If XLkX\in L^{k}, the kk-th derivative φX(k)(t)\varphi_{X}^{(k)}(t) is continuous.

\begin{proof}

\end{proof}

For X1,X2,X_{1},X_{2},\dots iid rvs with E[Xi]=μVar(Xi)=σ2i\mathbb{E}[X_{i}]=\mu\quad \text{Var}(X_{i})=\sigma^{2}\quad \forall idefine Sn=i=1nXiS_{n}=\sum_{i=1}^{n}X_{i}. Then SnnμσndYfor YN(0,1)\frac{S_{n}-n\mu}{\sigma \sqrt{ n }}\xrightarrow{d}Y\quad\text{for }Y\sim \mathcal{N}(0,1)or 1ni=1nXidN(μ,σ2)\frac{1}{\sqrt{ n }}\sum_{i=1}^{n}X_{i}\xrightarrow{d}\mathcal{N}(\mu,\sigma^{2})

σ<    XiL2    XiL1    μ\sigma<\infty\implies X_{i}\in L^{2}\implies X_{i}\in L^{1}\implies\mu well defined.

E[Sn]=nμ\mathbb{E}[S_{n}]=n\mu and Var(Sn)=σ2n\text{Var}(S_{n})=\sigma^{2}n. So one can think of CLT as SnN(nμ,σ2n)=nμ+σnN(0,1)S_{n}\approx \mathcal{N}(n\mu,\sigma^{2}n)=n\mu+\sigma \sqrt{ n }\mathcal{N}(0,1)at scale of n\sqrt{ n }.