FIND ME ON

GitHub

LinkedIn

Portmanteau's Theorem

🌱

Theorem
ProbabilityMetrics

Let μn,μ\mu_{n},\mu be Probability Measures on (Ω,F)(\Omega,\mathcal{F}). The following conditions are equivalent: 1. μn\mu_{n} converges weakly to μ\mu, i.e. for every Continuous and bounded f:ΩRf:\Omega\to \mathbb{R}:Xf(x)μn(dx)Xf(x)μ(dx).\int\limits _{\mathbb{X}}f(x) \, \mu_{n}(dx)\to \int\limits _{\mathbb{X}}f(x) \, \mu(dx) . 2. For all xRx\in \mathbb{R} s.t. μ{x}=0\mu \{ x \}=0 μn((,x])μ((,x])\mu_{n}((-\infty,x])\to\mu((-\infty,x]) 3. For every Closed set CΩC\in\Omega: lim supnμn(C)μ(C).\limsup_{ n \to \infty }\mu_{n}(C)\le \mu(C) . 4. For every Open set GG: lim infnμn(G)μ(G).\liminf_{ n \to \infty }\mu_{n}(G)\ge \mu(G). 5. For every BB(Ω)B\in\mathcal{B}(\Omega) whose boundary has μ\mu-measure 00 (i.e. μ(B)=0\mu(\partial B)=0):limnμn(B)=μ(B).\lim_{ n \to \infty } \mu_{n}(B)=\mu(B).

For rvs X,X1,X2,X,X_{1},X_{2},\dots on (Ω,F,P)(\Omega,\mathcal{F},\mathbb{P}), the following are equivalent: 1. XnX_{n} converges to XX in distribution, i.e. for all tRt\in \mathbb{R} such that F(t)F(t) is Continuous Fn(t)F(t)F_{n}(t)\to F(t) 2. For all Continuous and bounded f:ΩRf:\Omega\to \mathbb{R} E[f(Xn)]E[f(X)]\mathbb{E}[f(X_{n})]\to \mathbb{E}[f(X)] 3. For every closed set FRF\subseteq \mathbb{R} P(XF)lim supnP(XnF)\mathbb{P}(X\in F)\ge \limsup_{ n \to \infty } \mathbb{P}(X_{n}\in F) 4. For every open set GRG\subseteq \mathbb{R} P(XG)lim infnP(XnG)\mathbb{P}(X\in G)\le \liminf_{ n \to \infty } \mathbb{P}(X_{n}\in G) 5. For every BBB\in\mathcal{B} such that P(XB)=0\mathbb{P}(X\in \partial B)=0 P(XnB)P(XB)\mathbb{P}(X_{n}\in B)\to \mathbb{P}(X\in B)

  1. For any ψCc2(R)\psi \in C_{c}^{2}(\mathbb{R}) E[ψ(Xn)]E[ψ(X)]\mathbb{E}[\psi(X_{n})]\to \mathbb{E}[\psi(X)]

Linked from