FIND ME ON

GitHub

LinkedIn

Theorems on Convergence

🌱

Theorem
ProbabilityMeasureTheoryStochasticDiffs

Let (Xn)nNL1(Ω,F,P)(X_{n})_{n\in\mathbb{N}}\subset \mathscr{L}^{1}(\Omega,\mathcal{F},P) and assume XnXX_{n}\to X a.s. then XnX in L1    (Xn)nN uniformly integrableX_{n}\to X\text{ in }L^{1}\iff(X_{n})_{n\in\mathbb{N}}\text{ uniformly integrable}i.e. L1 convergence is equivalent to being uniformly integrable.

Almost Sure Convergence implies In Probability Convergence i.e. XnX a.s.    XnpXX_{n}\to X\,\text{ a.s.}\implies X_{n}\xrightarrow{\text{p}}X

\begin{proof} Fix ϵ>0\epsilon>0 and let Yn=1XnXϵY_{n}=\mathbb{1}_{|X_{n}-X|\ge \epsilon}. Note that Yn1|Y_{n}|\le 1 and limnYn=0\lim_{ n \to \infty }Y_{n}=0 a.s. (or E[limnYn]=0\mathbb{E}[\lim_{ n \to \infty }Y_{n}]=0). Then, by Dominated Convergence Theorem E[Yn]0\mathbb{E}[Y_{n}]\to0 or equivalently P(XnXϵ)0\mathbb{P}(|X_{n}-X|\ge\epsilon)\to0. \end{proof}

If XnXX_{n}\to X in probability, then there is a subsequence nkn_{k} such that XnkXa.s.X_{n_{k}}\to X\,\text{a.s.}

\begin{proof} P(XnXϵ)0    Xnk:P(XnkX1k)1k2\mathbb{P}(|X_{n}-X|\ge \epsilon)\to0\implies \exists X_{n_{k}}:\mathbb{P}\left( |X_{n_{k}}-X|\ge \frac{1}{k} \right)\le \frac{1}{k^{2}} We have that 1k2<\sum \frac{1}{k^{2}}<\infty, so by Borel-Cantelli Lemma P({XnkX1k i.o.})=0.\mathbb{P}\left( \left\{ |X_{n_{k}}-X|\ge \frac{1}{k}\text{ i.o.} \right\} \right)=0.So, XnkX<1k|X_{n_{k}}-X|< \frac{1}{k} for sufficiently large kk happens a.s. thus Xnka.s.X.X_{n_{k}}\xrightarrow{a.s.} X. \end{proof}

Convergence in Expectation implies In Probability Convergence i.e. XnLpX    XnpXX_{n}\xrightarrow{L^{p}}X\implies X_{n}\xrightarrow{p}X

\begin{proof} P(XnXϵ)=P(XnXpϵp)E[XnXp]ϵp0\mathbb{P}(|X_{n}-X|\ge \epsilon)=\mathbb{P}(|X_{n}-X|^{p}\ge \epsilon^{p})\le \frac{\mathbb{E}[|X_{n}-X|^{p}]}{\epsilon^{p}}\to0where the final convergence is since XnLpX.X_{n}\xrightarrow{L^{p}}X. \end{proof}

If XnXX_{n}\to X in probability and XnY,nN|X_{n}|\le Y,\forall n\in\mathbb{N}, for some YLpY\in L^{p}, then XLpX \in L^{p} and XnLpXX_{n}\xrightarrow{L^{p}}X

>[!lemma] >If ZL1Z\in \mathscr{L}^{1} and P(An)0\mathbb{P}(A_{n})\to0 then E[Z1An]=AnZdP0\mathbb{E}[Z\cdot \mathbb{1}_{A_{n}}]=\int\limits _{A_{n}}Z \, d\mathbb{P}\to0
\begin{proof} Step 1: XLpX\in \mathscr{L}^{p}. Why? Well, we have that Xnka.s.XX_{n_{k}}\xrightarrow{a.s.}X for a subsequence nkn_{k} by and since XnkY|X_{n_{k}}|\le Y this means XY|X|\le Y a.s..
Step 2: XnLpXX_{n}\xrightarrow{L^{p}}X. For arbitrary ϵ>0\epsilon>0, E[XnXp]=E[XnXp1{XnX<ϵ}]+E[XnXp1{XnXϵ}]ϵp+E[(2Y)p1{XnXϵ}]by lemma aboveϵp0 (since ϵ arbitrary)\begin{align*} \mathbb{E}[|X_{n}-X|^{p}]&=\mathbb{E}[|X_{n}-X|^{p}\cdot \mathbb{1}_{\{ |X_{n}-X|<\epsilon \}}]+\mathbb{E}[|X_{n}-X|^{p}\cdot \mathbb{1}_{\{ |X_{n}-X|\ge\epsilon \}}]\\ &\le \epsilon^{p}+\mathbb{E}[(2Y)^{p}\cdot \mathbb{1}_{\{ |X_{n}-X|\ge \epsilon \}}]&\text{by lemma above}\\ &\to \epsilon^{p}\equiv0&\text{ (since }\epsilon \text{ arbitrary)} \end{align*} \end{proof}

If XnXX_{n}\to X in probability then XnXX_{n}\to X in distribution.

\begin{proof} By Portmanteau’s Theorem: XnpX    P(XnXδ)=0,δ>0XndX    E[ψ(Xn)]E[ψ(X)],ψCc2(R)\begin{gather*} X_{n}\xrightarrow{p}X\implies \mathbb{P}(\left| X_{n}-X \right| \ge\delta)=0,\quad\forall\delta>0\\ X_{n}\xrightarrow{d}X\implies \mathbb{E}[\psi(X_{n})]\to \mathbb{E}[\psi(X)],\quad\forall\psi \in C_{c}^{2}(\mathbb{R}) \end{gather*} Note, for any
ψCc2(R),ϵ>0,δ>0:XYδ    ψ(X)ψ(Y)<ϵ\forall\psi \in C_{c}^{2}(\mathbb{R}),\forall\epsilon>0,\exists\delta>0:|X-Y|\le\delta\implies\psi(X)-\psi(Y)<\epsilon
which holds by compactness.
Thus, if M=supxψ(x)M=\sup_{x}|\psi(x)|, fix and arbitrary ϵ>0\epsilon>0 such that
E[ψ(Xn)]E[ψ(X)]E[ψ(Xn)ψ(X)]triangle inequality=E[ψ(Xn)ψ(X)1XnXδ]+E[ψ(Xn)ψ(X)1XnX>δ]ϵ+2MP(XnX>δ)ϵ \begin{align*} \left| \mathbb{E}[\psi(X_{n})]-\mathbb{E}[\psi(X)] \right| &\le \mathbb{E}[\left| \psi(X_{n})-\psi(X) \right| ]&\text{triangle inequality}\\ &= \mathbb{E}[\left| \psi(X_{n})-\psi(X) \right| \cdot \mathbb{1}_{|X_{n}-X|\le\delta}]\\ &\quad\quad\quad\quad +\mathbb{E}[\left| \psi(X_{n})-\psi(X) \right| \cdot \mathbb{1}_{|X_{n}-X|>\delta}]\\ &\le \epsilon+2M\cdot \mathbb{P}(|X_{n}-X|>\delta)\\ &\to\epsilon \end{align*} \end{proof}

So, we have the following picture:

\usepackage{tikz-cd} 
\usepackage{amsmath}
\usepackage{amsfonts}
\begin{document} 
\begin{tikzcd}
X_n\xrightarrow{L^p}X \arrow[rd, Rightarrow]\\
& X_n\xrightarrow{\text{p}}X \arrow[r,Rightarrow] & X_n\xrightarrow{d}X\\
X_n\xrightarrow{\text{a.s.}}X \arrow[ru,Rightarrow]
\end{tikzcd}
\end{document} 

Linked from