FIND ME ON

GitHub

LinkedIn

Convergence in Expectation

🌱

Definition
Probability

Let (Ī©,F)(\Omega,\mathcal{F}) be a measurable space. Let (Xn)n∈N(X_{n})_{n\in\mathbb{N}} be a sequence of rvs with densities (fn)n∈N(f_{n})_{n\in\mathbb{N}} and let XX be another rv with density ff. We say XnX_{n} converges to XX in mean to the order pp if they converge in Lp: ∄fnāˆ’f∄p→0, 1≤p<āˆž\lVert f_{n}-f \rVert_{p} \to0 ,\,1\le p<\inftyor E[∣fnāˆ’f∣p]=∫R∣fn(x)āˆ’f(x)∣p μ(dx)→0\mathbb{E}[|f_{n}-f|^{p}]=\int\limits _{\mathbb{R}}\left| f_{n}(x)-f(x) \right|^{p} \, \mu(dx) \to 0written as Xn→LpX.X_{n}\xrightarrow{L^{p}}X.

Linked from