NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let (fα)α∈Λ⊂L1(Ω,F,P)(f_{\alpha})_{\alpha\in\Lambda}\subset \mathscr{L}^{1}(\Omega,\mathcal{F},P)(fα)α∈Λ⊂L1(Ω,F,P) (i.e. a family of integrable functions); (fα)α∈Λ(f_{\alpha})_{\alpha\in\Lambda}(fα)α∈Λ is called uniformly integrable if limc→∞(supα∈Λ∫{∣fα∣≥c}∣fα∣ dP)=0\lim_{ c \to \infty } \left(\sup_{\alpha\in\Lambda}\int\limits _{\{ |f_{\alpha}|\ge c\}}|f_{\alpha}| \, dP \right)=0c→∞limα∈Λsup{∣fα∣≥c}∫∣fα∣dP=0
Theorems on Convergence
Conditional Expectation
Local Martingale
Martingale Convergence Theorem