Let (Ω,F,P) be a probability space. Let X be integrable RV. Let G⊂F be a sub-σ-algebra. E[X∣G] is called the conditional expectation given G if 1. E[X∣G] is G-measurable (i.e. a measurable function on G) 2. ∀A∈G A∫E[X∣G]dP=A∫XdP
E[X∣G]=X a.s.∀G⊂F.
Let X be an integrable RV and G⊂F sub-σ-algebra then E[E[X∣G]]=E[X]
Let X be an integrable RV, let G1⊂G2⊂F sub-σ-algebras. Then E[E[X∣G2]∣G1]=E[X∣G1] a.s.
Let X∈L1(Ω,F,P) be an integrable RV and Y an RV on (Ω,F,P) such that XY∈L1(Ω,F,P). Let G⊂F be a sub-σ-algebra. Then, Y G-measurable⟹E[XY∣G]=YE[X∣G] a.s.
Let X be an integrable RV. Then the family (E[X∣G])G⊂F is uniformly integrable i.e. X∈L1(Ω,F,P)⟹(E[X∣G])G⊂F u.i.
Let X∈L1(Ω,F,P), G⊂F sub σ-algebra. Assume σ(X) is independent of G then E[X∣G]=E[X] a.s.
Let X∈L1(Ω,F,P), G⊂F sub-σ-algebra. Assume X≥0, then E[X∣G]≥0 a.s.
Let X,Y∈L1(Ω,F,P), let G⊂F be a sub-σ-algebra, then ∀α,β∈R E[αX+βY∣G]=αE[X∣G]+βE[Y∣G]
2 Discrete RVs
Let X and Y be two discrete RVs. Given Y=y, the conditional expectation of X is E[X∣Y=y]:=x∈X∑x pX∣Y(x∣y) if P(Y=y)>0 and ==E[∣X∣]<∞==. ## 2 Discrete RVs and Function Let X and Y be two discrete RVs. Given Y=y, the conditional expectation of f(X) is E[f(X)∣Y=y]:=x∈X∑f(x) pX∣Y(x∣y) if P(Y=y)>0 and E[∣g(X)∣]<∞.
2 Continuous RVs
Let X and Y be two continuous RVs. Given Y=y, the conditional expectation of X is E[X∣Y=y]=∫RxpX∣Y(x∣y)dx if pY(y)>0 and E[∣X∣]<∞.