FIND ME ON

GitHub

LinkedIn

Conditional Expectation

🌱

Definition
ProbabilityStochasticProcesses

Let (Ω,F,P)(\Omega,\mathcal{F},P) be a probability space. Let XX be integrable RV. Let GF\mathcal{G}\subset \mathcal{F} be a sub-σ-algebra. E[XG]E[X|\mathcal{G}] is called the conditional expectation given G\mathcal{G} if 1. E[XG]E[X|\mathcal{G}] is G\mathcal{G}-measurable (i.e. a measurable function on G\mathcal{G}) 2. AG\forall A\in\mathcal{G} AE[XG]dP=AXdP\int\limits _{A}E[X|\mathcal{G}] \, dP=\int\limits _{A}X \, dP

E[XG]=X a.s.E[X|\mathcal{G}]=X\text{ a.s.}GF\forall \mathcal{G}\subset \mathcal{F}.

Let XX be an integrable RV and GF\mathcal{G}\subset \mathcal{F} sub-σ-algebra then E[E[XG]]=E[X]E[E[X|\mathcal{G}]]=E[X]

Let XX be an integrable RV, let G1G2F\mathcal{G}_{1}\subset \mathcal{G}_{2}\subset \mathcal{F} sub-σ-algebras. Then E[E[XG2]G1]=E[XG1] a.s.E[E[X|\mathcal{G_{2}}]|\mathcal{G}_{1}]=E[X|\mathcal{G_{1}}]\text{ a.s.}

Let XL1(Ω,F,P)X\in\mathscr{L}^{1}(\Omega,\mathcal{F},P) be an integrable RV and YY an RV on (Ω,F,P)(\Omega,\mathcal{F},P) such that XYL1(Ω,F,P)XY\in\mathscr{L}^{1}(\Omega,\mathcal{F},P). Let GF\mathcal{G}\subset \mathcal{F} be a sub-σ-algebra. Then, Y G-measurable    E[XYG]=YE[XG] a.s.Y \ \mathcal{G}\text{-measurable}\implies E[XY|\mathcal{G}]=YE[X|\mathcal{G}]\text{ a.s.}

Let XX be an integrable RV. Then the family (E[XG])GF(E[X|\mathcal{G}])_{\mathcal{G}\subset\mathcal{F}} is uniformly integrable i.e. XL1(Ω,F,P)    (E[XG])GF u.i.X\in\mathscr{L}^{1}(\Omega,\mathcal{F},P)\implies(E[X|\mathcal{G}])_{\mathcal{G}\subset\mathcal{F}}\text{ u.i.}

Let XL1(Ω,F,P)X\in\mathscr{L}^{1}(\Omega,\mathcal{F},P), GF\mathcal{G}\subset \mathcal{F} sub σ-algebra. Assume σ(X)\sigma(X) is independent of G\mathcal{G} then E[XG]=E[X] a.s.E[X|\mathcal{G}]=E[X]\text{ a.s.}

Let XL1(Ω,F,P)X\in\mathscr{L}^{1}(\Omega,\mathcal{F},P), GF\mathcal{G}\subset \mathcal{F} sub-σ-algebra. Assume X0X\ge0, then E[XG]0 a.s. E[X|\mathcal{G}]\ge 0\text{ a.s. }

Let X,YL1(Ω,F,P)X,Y\in\mathscr{L}^{1}(\Omega,\mathcal{F},P), let GF\mathcal{G}\subset \mathcal{F} be a sub-σ-algebra, then α,βR\forall\alpha,\beta\in\mathbb{R} E[αX+βYG]=αE[XG]+βE[YG]E[\alpha X+\beta Y|\mathcal{G}]=\alpha E[X|\mathcal{G}]+\beta E[Y|\mathcal{G}]

2 Discrete RVs

Let XX and YY be two discrete RVs. Given Y=yY=y, the conditional expectation of XX is E[XY=y]:=xXx pXY(xy)E[X|Y=y]:=\sum_{x\in\mathscr{X}}x \ p_{X|Y}(x|y) if P(Y=y)>0P(Y=y)>0 and ==E[X]<E[|X|]<\infty==. ## 2 Discrete RVs and Function Let XX and YY be two discrete RVs. Given Y=yY=y, the conditional expectation of f(X)f(X) is E[f(X)Y=y]:=xXf(x) pXY(xy)E[f(X)|Y=y]:=\sum_{x\in\mathscr{X}}f(x) \ p_{X|Y}(x|y) if P(Y=y)>0P(Y=y)>0 and E[g(X)]<E[|g(X)|]<\infty.

2 Continuous RVs

Let XX and YY be two continuous RVs. Given Y=yY=y, the conditional expectation of XX is E[XY=y]=RxpXY(xy)dxE[X|Y=y]=\int_\mathbb{R}xp_{X|Y}(x|y)dx if pY(y)>0p_Y(y)>0 and E[X]<E[|X|]<\infty.

Linked from