FIND ME ON

GitHub

LinkedIn

Martingale Convergence Theorem

🌱

Definition
StochasticDiffsStochasticProcesses

Let (Xn)nN(X_{n})_{n\in\mathbb{N}} be a (Fn)nN(\mathcal{F}_{n})_{n\in\mathbb{N}}-martingale on (Ω,F,P)(\Omega,\mathcal{F},P) 1. If (Xn)nN(X_{n})_{n\in\mathbb{N}} is uniformly integrable, then l=limnXn\mathscr{l}=\lim_{ n \to \infty }X_{n} a.s. exists and is integrable and furthermore Xnl in L1X_{n}\to \mathscr{l}\text{ in }L^{1}and closes (Xn)nN(X_{n})_{n\in\mathbb{N}} from the right i.e. Xn=E[lFn] a.s. , nNX_{n}=E[\mathscr{l}|\mathcal{F}_{n}]\text{ a.s. }, \ \forall n\in\mathbb{N} 2. Conversely, if XL1(Ω,F,P)\exists X_{\infty}\in\mathscr{L}^1(\Omega,\mathcal{F},P) which closes (Xn)nN(X_{n})_{n\in\mathbb{N}} to the right (i.e. Xn=E[XFn]X_{n}=E[X_{\infty}|\mathcal{F}_{n}] a.s. nN\forall n\in\mathbb{N}) then (Xn)nN(X_{n})_{n\in\mathbb{N}} is uniformly integrable and for lL1(Ω,F,P)\mathscr{l}\in\mathscr{L}^{1}(\Omega,\mathcal{F},P) given by l=limnXn\mathscr{l}=\lim_{ n \to \infty }X_{n} a.s. and in L1 satisfies l=E[XF] a.s.\mathscr{l}=E[X_{\infty}|\mathcal{F}_{\infty^{-}}]\text{ a.s.}where F=σ(nNFn)\mathcal{F_{\infty^{-}}}=\sigma\left( \bigcup_{n\in\mathbb{N}}\mathcal{F}_{n} \right) ## Intuition By XX_{\infty} “closing XnX_{n} to the right” we mean that nN\forall n\in\mathbb{N} (for every time step) Xn=E[XFn]X_{n}=E[X_{\infty}|\mathcal{F}_{n}]holds. So that means for our martingale, XX_{\infty} is the limiting value.

For the first one what we’re saying is: “If X=(Xn)nNX=(X_{n})_{n\in\mathbb{N}} is u.i. then XnX_{n} converges to some limit, l\mathscr{l}, and this value closes XnX_{n} to the right nN\forall n\in\mathbb{N}” i.e. XnX_{n} u.i.     \implies XnlX_{n}\to \mathscr{l} & l\mathscr{l} closes XnX_{n} to the right For the second one what we’re saying is: “If we have some function XX_{\infty} closing X=(Xn)nNX=(X_{n})_{n\in\mathbb{N}} to the right then (Xn)nN(X_{n})_{n\in\mathbb{N}} is u.i. and X=(Xn)nNX=(X_{n})_{n\in\mathbb{N}} converges to some l\mathscr{l} and also satisfies martingale property”. i.e. XX_{\infty} closes XnX_{n} to the right     \implies XnX_{n} u.i. & XnlX_{n}\to \mathscr{l} & l=E[XF]\mathscr{l}=E[X_{\infty}|\mathcal{F}_{\infty^{-}}]

Let (Xn)nZ(X_{n})_{n\in\mathbb{Z}^{-}} be a (Fn)nZ(\mathcal{F}_{n})_{n\in\mathbb{Z}^{-}}-martingale (i.e. (Fn)nZ(\mathcal{F}_{n})_{n\in\mathbb{Z}^{-}} is a filtration on (Ω,F,P)(\Omega,\mathcal{F},P)) or Fn+mFn m,nZ\mathcal{F}_{n+m}\subset \mathcal{F}_{n} \ \forall m,n\in\mathbb{Z}^{-} e.g. F0F1F2\mathcal{F}_{0}\supset\mathcal{F}_{-1}\supset\mathcal{F}_{-2}\supset\dots and (Xn)nZL1(Ω,F,P)(X_{n})_{n\in\mathbb{Z}^{-}}\subset \mathscr{L}^{1}(\Omega,\mathcal{F},P) and XnX_{n} be Fn\mathcal{F}_{n}-measurable nZ\forall n\in\mathbb{Z}^{-} (i.e. XnX_{n} is (Fn)nZ(\mathcal{F}_{n})_{n\in\mathbb{Z}^-}-adapted or XnX_{n} is a RV on Fn, nZ\mathcal{F_{n}}, \ \forall n\in\mathbb{Z}^{-}) and E[XnFn+m]=XmE[X_{n}|\mathcal{F}_{n+m}]=X_{m} a.s. n,mZ,mn\forall n,m\in\mathbb{Z}^{-}, m\le n. Then (Xn)nZ(X_{n})_{n\in\mathbb{Z}^{-}} is uniformly integrable and lL1(Ω,F,P)\exists \mathscr{l}\in\mathscr{L}^1(\Omega,\mathcal{F},P) such that XnlX_{n}\to \mathscr{l} a.s. and in L1. Furthermore l\mathscr{l} is F\mathcal{F}_{-\infty}-measurable and l=E[X0F]\mathscr{l}=E[X_{0}|\mathcal{F}_{-\infty}]