FIND ME ON

GitHub

LinkedIn

Scheffé's Theorem

🌱

Theorem
ProbabilityStochasticControl

Suppose that νn(A)=Aδndμ\nu_{n}(A)=\int\limits _{A}\delta_{n} \, d\mu and ν(A)=Aδdμ\nu(A)=\int\limits _{A}\delta \, d\mu for densities δn\delta_{n} and δ\delta. If νn(Ω)=ν(Ω)<,nN(1)\nu_{n}(\Omega)=\nu(\Omega)<\infty,\quad \forall n\in\mathbb{N}\tag{1} and if δnδ\delta_{n}\to\delta μ\mu-a.s. then supAFν(A)νn(A)Ωδδndμ0(2)\sup_{A\in\mathcal{F}}|\nu(A)-\nu_{n}(A)|\le \int\limits _{\Omega}|\delta-\delta_{n}| \, d\mu\to0 \tag{2}

\begin{proof} Recall the Lebesgue Integral Triangle Inequality: Lebesgue Integral Triangle Inequality this helps us find: supAFν(A)νn(A)=supAFAδdμAδndμ=supAFAδδndμsupAFAδδndμ\begin{align*} \sup_{A\in\mathcal{F}}|\nu(A)-\nu_{n}(A)|&= \sup_{A\in\mathcal{F}}\left| \int\limits _{A}\delta \, d\mu-\int\limits _{A}\delta_{n} \, d\mu \right| \\ &= \sup_{A\in\mathcal{F}}\left| \int\limits _{A}\delta-\delta_{n} \, d\mu \right| \\ &\le \sup_{A\in\mathcal{F}}\int\limits _{A}|\delta-\delta_{n}| \, d\mu \end{align*}then, let gn=δδng_{n}=\delta-\delta_{n}.

The positive part gn+g_{n}^{+} of gng_{n} converges to 0 a.e. (this is trivial).

Since:0gn+δ    0(δδn)+δ0\le g_{n}^{+}\le \delta \iff 0\le(\delta-\delta_{n})^{+}\le\deltaand δL1(Ω,F,μ)\delta \in\mathscr{L}^{1}(\Omega,\mathcal{F},\mu) and so Dominated Convergence Theorem applies: gn+dμ0.\int\limits g_{n}^{+} \, d\mu\to0. But, gndμ=0\int\limits g_{n} \, d\mu=0 by (1)(1) hence Ωgndμ={gn0}gndμ{gn<0}gndμ=2{gn0}gndμ=2Ωgn+dμ0\begin{align*} \int\limits _{\Omega}|g_{n}| \, d\mu &= \int\limits _{\{ g_{n}\ge0 \}}g_{n} \, d\mu-\int\limits _{\{ g_{n}<0 \}}g_{n} \, d\mu\\ &= 2\int\limits _{\{ g_{n}\ge 0\}}g_{n} \, d\mu\\ &= 2\int\limits _{\Omega}g_{n}^{+} \, d\mu\to {0} \end{align*} where the third line arises since the integral is equal to zero.

\end{proof} This theorem shows up in a different form in Borkar’s Probability Theory: An Advanced Course: >[!thm|2.33] Scheffé’s Theorem >Let (μn)nN(\mu_{n})_{n\in\mathbb{N}} be a sequence of probability measures on a measurable space (Ω,F)(\Omega,\mathcal{F}) such that μnλ,nN,\mu_{n}\ll\lambda,\quad \forall n\in\mathbb{N},for some nonnegative, σ-finite measure λ\lambda on (Ω,F)(\Omega,\mathcal{F}). If dμndλdμdλ,λ-a.s.\frac{d\mu_{n}}{d\lambda}\to \frac{d\mu_{\infty}}{d\lambda},\,\lambda \text{-a.s.}then μnμ\mu_{n}\to \mu_{\infty} in total variation (which is equivalent to Convergence in Distribution here).

\begin{proof} The claim amounts to showing that dμndλdμdλ, in L1(Ω,F,λ)\frac{d\mu_{n}}{d\lambda}\to \frac{d\mu_{\infty}}{d\lambda},\,\text{ in }L^{1}(\Omega,\mathcal{F},\lambda)this follows from the following theorem: >[!thm|1.3.3] >Let (Xn)n1(X_{n})_{n\ge 1} be a sequence of integrable rvs on (Ω,F,P)(\Omega,\mathcal{F},\mathbb{P}) with Xn0,nNX_{n}\ge 0,\forall n\in\mathbb{N} a.s. and Xna.s.XX_{n}\xrightarrow{\text{a.s.}}X. Then XnL1X    E[Xn]E[X]X_{n}\xrightarrow{L^{1}}X \iff \mathbb{E}[X_{n}]\to \mathbb{E}[X] >

For SS countable with the discrete topology, this shows that convergence in P(S)\mathcal{P}(S) and in total variation are equivalent. \end{proof} >[!remark] >This gives us fna.sf    XndXf_{n}\xrightarrow{a.s}f\implies X_{n}\xrightarrow{d}Xonly if XnXX_{n}\ll X.