FIND ME ON

GitHub

LinkedIn

Lévy's Convergence Theorems

🌱

Definition
StochasticDiffsStochasticProcesses

Let YL1(Ω,F,P)Y\in\mathscr{L}^{1}(\Omega,\mathcal{F},P). Let (Fn)nN(\mathcal{F}_{n})_{n\in\mathbb{N}} be a filtration on (Ω,F,P)(\Omega,\mathcal{F},P). Then E[YFn]E[YF]E[Y|\mathcal{F}_{n}]\to E[Y|\mathcal{F}_{\infty^{-}}]a.s. and in L1 as nn\to\infty. Where F=nNFn\mathcal{F}_{\infty^{-}}=\bigcup_{n\in\mathbb{N}}\mathcal{F}_{n}.

Let YL1(Ω,F,P)Y\in\mathscr{L}^{1}(\Omega,\mathcal{F},P). Let (Fn)nZ(\mathcal{F}_{n})_{n\in\mathbb{Z}^{-}} be a filtration on (Ω,F,P)(\Omega,\mathcal{F},P). Then E[YFn]E[YF]E[Y|\mathcal{F}_{n}]\to E[Y|\mathcal{F}_{-\infty}]a.s. and in L1 as nn\to-\infty. Where F=nZFn\mathcal{F}_{-\infty}=\bigcap_{n\in\mathbb{Z}^{-}}\mathcal{F_{n}}.