NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let V,WV,WV,W be finite dimensional vector spaces, with bases {v1,...,vn}⊂V\{v_1,...,v_n\}\subset V{v1,...,vn}⊂V and {w1,...,vm}⊂W\{w_1,...,v_m\}\subset W{w1,...,vm}⊂W. If we have linear maps S,T∈L(V,W)S,T\in\mathscr{L}(V,W)S,T∈L(V,W), then M(S+T)=M(S)+M(T)\mathcal{M}(S+T)=\mathcal{M}(S)+\mathcal{M}(T)M(S+T)=M(S)+M(T) If λ∈F\lambda\in\mathbb{F}λ∈F, then M(λT)=λM(T)\mathcal{M}(\lambda T)=\lambda \mathcal{M}(T)M(λT)=λM(T)