FIND ME ON

GitHub

LinkedIn

Linearity Properties of Matrices

🌱

Theorem
LinearAlgebra

Proposition (Linearity properties for matrices of linear maps)

Let V,WV,W be finite dimensional vector spaces, with bases {v1,...,vn}V\{v_1,...,v_n\}\subset V and {w1,...,vm}W\{w_1,...,v_m\}\subset W. If we have linear maps S,TL(V,W)S,T\in\mathscr{L}(V,W), then M(S+T)=M(S)+M(T)\mathcal{M}(S+T)=\mathcal{M}(S)+\mathcal{M}(T) If λF\lambda\in\mathbb{F}, then M(λT)=λM(T)\mathcal{M}(\lambda T)=\lambda \mathcal{M}(T)