FIND ME ON

GitHub

LinkedIn

Matrix of Linear Map

🌱

Definition
LinearAlgebra

Suppose that V,WV,W are finite dimensional vector spaces, where {v1,...,vn}\{v_1,...,v_n\} is a basis for VV and {w1,...,wm}\{w_1,...,w_m\} is a basis for WW. Also suppose that T∈L(V,W)T\in\mathscr{L}(V,W) is a linear map. For j=1,...,nj=1,...,n we can write T(vj)=a1,jw1+...+am,jwmT(v_j)=a_{1,j}w_1+...+a_{m,j}w_m We define the Matrix of Linear Map TT to be M(T):=[ai,j]=[a1,1a1,2⋯a1,na2,1⋱⋮⋮⋱⋮am,1⋯⋯am,n]\mathcal{M}(T):=[a_{i,j}]= \begin{bmatrix} a_{1,1} & a_{1,2} &\cdots & a_{1,n} \\ a_{2,1} & \ddots & &\vdots \\ \vdots & & \ddots & \vdots \\ a_{m,1} & \cdots & \cdots & a_{m,n}\\ \end{bmatrix}

There is another way to understand what M(T)\mathcal{M}(T) is. We have shown that any two vector spaces with the same dimension are isomorphic, meaning V≅RnV\cong\mathbb{R}^n and W≅RmW\cong\mathbb{R}^m. Set {e1,...,en}\{e_1,...,e_n\} to be the standard basis for Rn\mathbb{R}^n and {f1,...,fm}\{f_1,...,f_m\} to be the standard basis of Rm\mathbb{R}^m. There is an isomorphism \upphiV:Rn→V\upphi_V:\mathbb{R}^n\to V such that \upphiV(ei)=vi\upphi_V(e_i)=v_i for i=1,...,ni=1,...,n and another isomorphism \upphiW:Rm→V\upphi_W:\mathbb{R}^m\to V such that \upphiW(fi)=wi\upphi_W(f_i)=w_i. The composition \upphiWāˆ’1∘T∘\upphiV:Rn→Rm\upphi^{-1}_W\circ T\circ\upphi_V:\mathbb{R}^n\to\mathbb{R}^m is a linear map, and can be represented by a matrix. That matrix is M(T)\mathcal{M}(T). Rn→M(T)Rm;SV↓↑SWāˆ’1V→TW \begin{CD} \mathbb{R}^n @>{\mathscr{M}(T)}>> \mathbb{R}^m; \\ @V{{S_V}}VV @AA{S_W^{-1}}A \\ V @>>{T}> W\\ \end{CD} ## Remark This essentially proves that M\mathcal{M} is a linear map.

Linked from