FIND ME ON

GitHub

LinkedIn

Norm

🌱

Definition
RealAnalMeasureTheory

Definition

Let VV be a F\mathbb{F}-vector space. A norm on VV assigns to each vector vVv\in V a “magnitude” vR+\|v\|\in\mathbb{R}^{+}, and the assignment satisfies the following: 1. Positive Definiteness: v0, vV\|v\|\ge0, \ \forall v\in V or v=0    v=0v\|v\|=0 \iff v=0_{v} 2. Homogeneity: av=av\|av\|=|a|\cdot\|v\|aR\forall a\in\mathbb{R} and vV\forall v\in V. 3. Triangle Inequality: v1+v2v1+v2\|v_{1}+v_{2}\|\le\|v_{1}\|+\|v_{2}\|v1,v2V\forall v_{1},v_{2}\in V.

Definition (Complex Norm)

If z=a+biz=a+bi is a complex number, we define the Norm of z to be the complex number z:=a2+b2|z|:=\sqrt{a^2+b^2}

Linked from