FIND ME ON

GitHub

LinkedIn

2-Norm

🌱

Definition
MeasureTheory

Definition

The 2-Norm, denoted as 2\|\cdot\|_{2}, for any arbitrary vVv\in V is defined as follows: Fn: v2=v12++vn2F:(vi)iN2=(i=1vi2)12C0([a,b];F):f2=(abf(x)2dx)12\begin{align*} \mathbb{F}^{n}&: \ \|v\|_{2}=\sqrt{|v_{1}|^{2}+\cdots+|v_{n}|^{2}}\\ \mathbb{F}^{\infty}&:\|(v_{i})_{i\in\mathbb{N}}\|_{2}=\left(\sum\limits_{i=1}^{\infty}|v_{i}|^{2}\right)^{\frac{1}{2}}\\ C^{0}([a,b];\mathbb{F})&:\|f\|_{2}=\left(\int_{a}^{b}|f(x)|^{2}dx\right)^{\frac{1}{2}} \end{align*}