NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
The 2-Norm, denoted as ∥⋅∥2\|\cdot\|_{2}∥⋅∥2, for any arbitrary v∈Vv\in Vv∈V is defined as follows: Fn: ∥v∥2=∣v1∣2+⋯+∣vn∣2F∞:∥(vi)i∈N∥2=(∑i=1∞∣vi∣2)12C0([a,b];F):∥f∥2=(∫ab∣f(x)∣2dx)12\begin{align*} \mathbb{F}^{n}&: \ \|v\|_{2}=\sqrt{|v_{1}|^{2}+\cdots+|v_{n}|^{2}}\\ \mathbb{F}^{\infty}&:\|(v_{i})_{i\in\mathbb{N}}\|_{2}=\left(\sum\limits_{i=1}^{\infty}|v_{i}|^{2}\right)^{\frac{1}{2}}\\ C^{0}([a,b];\mathbb{F})&:\|f\|_{2}=\left(\int_{a}^{b}|f(x)|^{2}dx\right)^{\frac{1}{2}} \end{align*}FnF∞C0([a,b];F): ∥v∥2=∣v1∣2+⋯+∣vn∣2:∥(vi)i∈N∥2=(i=1∑∞∣vi∣2)21:∥f∥2=(∫ab∣f(x)∣2dx)21