FIND ME ON

GitHub

LinkedIn

Infinity Norm

🌱

Definition
MeasureTheory

Definition

For f:XCf:X\to \mathbb{C} essential bounded we define the infinity Norm as f:=inf{M0:M is an essential bound for f}\|f\|_{\infty}:=\inf\{ M\ge 0:M\text{ is an essential bound for }f \} ## Examples The \infty-Norm, denoted as \|\cdot\|_{\infty}, for any arbitrary vVv\in V is defined as follows: Fn: v=max{vi:i{1,,n}}F:(vi)iN=sup{vi:iN}C0([a,b];F):f=sup{f(x):x[a,b]}\begin{align*} \mathbb{F}^{n}&: \ \|v\|_{\infty}=\max\{|v_{i}|:i\in\{1,\ldots,n\}\}\\ \mathbb{F}^{\infty}&:\|(v_{i})_{i\in\mathbb{N}}\|_{\infty}=\sup\{|v_{i}|:i\in\mathbb{N}\}\\ C^{0}([a,b];\mathbb{F})&:\|f\|_{\infty}=\sup\{|f(x)|:x\in[a,b]\} \end{align*}

Linked from