FIND ME ON

GitHub

LinkedIn

Bounded-Lipschitz

🌱

MeasureTheory

Let X\mathbb{X} be a Borel space and let f:XRf:\mathbb{X}\to \mathbb{R} be a Borel function. We define the bounded-Lipschitz Norm as fBL:=f+supxyf(x)f(y)d(x,y)\lVert f \rVert _{BL}:=\lVert f \rVert _{\infty}+\sup_{x\not=y}\frac{|f(x)-f(y)|}{d(x,y)}

Let μ,νP(X)\mu,\nu \in\mathcal{P}(\mathbb{X}) we define the bounded Lipschitz metric as ρBL(μ,ν):=supfBL1fdμfdν\rho_{BL}(\mu,\nu):=\sup_{\lVert f \rVert _{BL}\le 1}\left|\int\limits f \, d\mu-\int\limits f \, d\nu \right|

Linked from