FIND ME ON

GitHub

LinkedIn

Lipschitz Continuous

🌱

Definition
AnalysisControl

Definition

Let URnU\subset \mathbb{R}^{n} be open and let f:URnf:U\to \mathbb{R}^{n} be a mapping. Then f is said to be Lipschitz continuous if k>0\exists k>0 s.t. f(x)f(y)kxyx,yU\lVert f(x)-f(y) \rVert \le k\lVert x-y \rVert \quad\forall x,y\in U

Linked from