NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let U⊂RnU\subset \mathbb{R}^{n}U⊂Rn be open and let f:U→Rnf:U\to \mathbb{R}^{n}f:U→Rn be a mapping. Then f is said to be Lipschitz continuous if ∃k>0\exists k>0∃k>0 s.t. ∥f(x)−f(y)∥≤k∥x−y∥∀x,y∈U\lVert f(x)-f(y) \rVert \le k\lVert x-y \rVert \quad\forall x,y\in U∥f(x)−f(y)∥≤k∥x−y∥∀x,y∈U
Picard-Lindelöf Theorem
Class Κ
Bounded-Lipschitz