NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
The 1-Norm, denoted as ∥⋅∥\|\cdot\|∥⋅∥ is defined as follows for any arbitrary v∈Vv\in Vv∈V where v=(v1,…,vn)v=(v_{1},\ldots,v_{n})v=(v1,…,vn) Fn: ∥v∥=∣v1∣+⋯+∣vn∣F∞:∥(vi)i∈N∥=∑i=1∞∣vi∣C0([a,b];F):∥f∥=∫ab∣f(x)∣dx\begin{align*} \mathbb{F}^{n}&: \ \|v\|=|v_{1}|+\cdots+|v_{n}|\\ \mathbb{F}^{\infty}&:\|(v_{i})_{i\in\mathbb{N}}\|=\sum\limits_{i=1}^{\infty}|v_{i}|\\ C^{0}([a,b];\mathbb{F})&:\|f\|=\int_{a}^{b}|f(x)|dx \end{align*}FnF∞C0([a,b];F): ∥v∥=∣v1∣+⋯+∣vn∣:∥(vi)i∈N∥=i=1∑∞∣vi∣:∥f∥=∫ab∣f(x)∣dx