FIND ME ON

GitHub

LinkedIn

1-Norm

🌱

Definition

Definition

The 1-Norm, denoted as \|\cdot\| is defined as follows for any arbitrary vVv\in V where v=(v1,,vn)v=(v_{1},\ldots,v_{n}) Fn: v=v1++vnF:(vi)iN=i=1viC0([a,b];F):f=abf(x)dx\begin{align*} \mathbb{F}^{n}&: \ \|v\|=|v_{1}|+\cdots+|v_{n}|\\ \mathbb{F}^{\infty}&:\|(v_{i})_{i\in\mathbb{N}}\|=\sum\limits_{i=1}^{\infty}|v_{i}|\\ C^{0}([a,b];\mathbb{F})&:\|f\|=\int_{a}^{b}|f(x)|dx \end{align*}