NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
Let LpL^{p}Lp be the Lp Space for some 1≤p<∞1\le p<\infty1≤p<∞. We then define the LpL^pLp norm on Lp(X,F,μ)L^{p}(X,\mathcal{F},\mu)Lp(X,F,μ) as follows: ∥f∥Lp=(∫X∣f∣p dμ)1p\|f\|_{L^{p}}=\left( \int\limits _{X}|f|^{p} \, d\mu \right)^{\frac{1}{p}}∥f∥Lp=X∫∣f∣pdμp1
A Summary of MATH 891