NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
For 1≤p<∞1\le p<\infty1≤p<∞ we define Lp(X,F,μ)={f:X→R measurable :∫X∣f∣p dμ<∞}\mathscr{L}^{p}(X,\mathcal{F},\mu)=\left\{ f:X\to \mathbb{R}\text{ measurable }: \int\limits _{X}|f|^p \, d\mu<\infty \right\}Lp(X,F,μ)=⎩⎨⎧f:X→R measurable :X∫∣f∣pdμ<∞⎭⎬⎫ Let the relation ∼\sim∼ on Lp(X,F,μ)=Lp(X,F,μ)∼L^{p}(X,\mathcal{F},\mu)=\frac{\mathscr{L}^{p}(X,\mathcal{F},\mu)}{\sim}Lp(X,F,μ)=∼Lp(X,F,μ) be defined ∀f,g∈Lp(X,F,μ)\forall f,g\in\mathscr{L}^p(X,\mathcal{F},\mu)∀f,g∈Lp(X,F,μ) as follows: f∼g ⟺ f=g μ-a.e.f\sim g\iff f=g \ \mu\text{-a.e.}f∼g⟺f=g μ-a.e.
A Summary of MATH 891
Lp Norm