FIND ME ON

GitHub

LinkedIn

Lp Space

🌱

Definition
MeasureTheory

Definition

For 1p<1\le p<\infty we define Lp(X,F,μ)={f:XR measurable :Xfpdμ<}\mathscr{L}^{p}(X,\mathcal{F},\mu)=\left\{ f:X\to \mathbb{R}\text{ measurable }: \int\limits _{X}|f|^p \, d\mu<\infty \right\} Let the relation \sim on Lp(X,F,μ)=Lp(X,F,μ)L^{p}(X,\mathcal{F},\mu)=\frac{\mathscr{L}^{p}(X,\mathcal{F},\mu)}{\sim} be defined f,gLp(X,F,μ)\forall f,g\in\mathscr{L}^p(X,\mathcal{F},\mu) as follows: fg    f=g μ-a.e.f\sim g\iff f=g \ \mu\text{-a.e.}

Linked from