FIND ME ON

GitHub

LinkedIn

Criterion for Upper Triangular Matrix

🌱

Theorem
LinearAlgebra

Proposition

Let VV be a finite dimensional vector space with basis B={v1,,vn}B=\{v_1,\cdots,v_n\}. For a linear map TL(V)T\in\mathscr{L}(V), the following statements are equivalent: 1. The matrix of TT with respect to BB is upper-triangular 2. T(vk)\mboxspan(v1,,vk)T(v_{k})\in\mbox{span}(v_1,\cdots,v_k) for 1kn1\le k\le n 3. \mboxspan(v1,,vk)\mbox{span}(v_1,\cdots,v_k) is TT-invariant for 1kn1\le k\le n