FIND ME ON

GitHub

LinkedIn

Upper-Triangular

🌱

Definition
LinearAlgebra

A matrix A=[aij]Fn×nA=[a_{ij}]\in\mathbb{F}^{n\times n} is called upper triangular if aij=0a_{ij}=0 whenever j<ij<i. If we write this matrix out it looks like A:=[a1,1a1,2a1,3a1,n0a2,2a2,3a2,n00a3,3a3,n000an,n]A:= \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} &\cdots & a_{1,n} \\ 0 & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ 0 & 0 & a_{3,3} & \cdots & a_{3,n} \\\vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n,n}\\ \end{bmatrix}

Linked from