NAVIGATION
Home
Research
Bookshelf
Garden
FIND ME ON
GitHub
LinkedIn
🌱
A matrix A=[aij]∈Fn×nA=[a_{ij}]\in\mathbb{F}^{n\times n}A=[aij]∈Fn×n is called upper triangular if aij=0a_{ij}=0aij=0 whenever j<ij<ij<i. If we write this matrix out it looks like A:=[a1,1a1,2a1,3⋯a1,n0a2,2a2,3⋯a2,n00a3,3⋯a3,n⋮⋮⋮⋱⋮000⋯an,n]A:= \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} &\cdots & a_{1,n} \\ 0 & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ 0 & 0 & a_{3,3} & \cdots & a_{3,n} \\\vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n,n}\\ \end{bmatrix}A:=a1,100⋮0a1,2a2,20⋮0a1,3a2,3a3,3⋮0⋯⋯⋯⋱⋯a1,na2,na3,n⋮an,n
Criterion for Invertibility using Upper Triangular
Criterion for Upper Triangular Matrix
Eigenvalues are Diagonal Elements of Upper Triangular
Existence of Upper Triangular Matrices on Complex Spaces