FIND ME ON

GitHub

LinkedIn

Span

🌱

Definition
LinearAlgebra

We define the Span of v1,...,vkv_1,...,v_k to be the set of all linear combinations of v1,...,vkv_1,...,v_k and we denote this set: span(v1,...,vk)span(v_1,...,v_k) In mathematical notation this is written: span(v1,...,vk):={a1v1+...+akvk∣ai∈F,i=1,...,k}span(v_1,...,v_k):=\{a_1v_1+...+a_kv_k|a_i\in\mathbb{F},i=1,...,k\}

When span(v1,..,vk)=Vspan(v_1,..,v_k)=V, we say β€œv1,..,vkΒ spanΒ Vv_1,..,v_k \text{ span } V” or β€œv1,...,vkv_1,...,v_k is a spanning set for VV”.

When we say the β€œsmallest vector space containing the vectors v1,...,vkv_1,...,v_k” we mean that if WβŠ‚VW\subset V is another subspace and va,..,vk∈Wv_a,..,v_k\in W, then span(v1,...,vk)βŠ‚Wspan(v_1,...,v_k)\subset W.

Linked from